Matches in DBpedia 2014 for { <http://dbpedia.org/resource/ADE_classification> ?p ?o. }
Showing items 1 to 33 of
33
with 100 items per page.
- ADE_classification abstract "In mathematics, the ADE classification (originally A-D-E classifications) is the complete list of simply laced Dynkin diagrams or other mathematical objects satisfying analogous axioms; "simply laced" means that there are no multiple edges, which corresponds to all simple roots in the root system forming angles of (no edge between the vertices) or (single edge between the vertices). The list comprisesThese comprise two of the four families of Dynkin diagrams (omitting and ), and three of the five exceptional Dynkin diagrams (omitting and ).This list is non-redundant if one takes for If one extends the families to include redundant terms, one obtains the exceptional isomorphismsand corresponding isomorphisms of classified objects.The question of giving a common origin to these classifications, rather than a posteriori verification of a parallelism, was posed in (Arnold 1976).The A, D, E nomenclature also yields the simply laced finite Coxeter groups, by the same diagrams: in this case the Dynkin diagrams exactly coincide with the Coxeter diagrams, as there are no multiple edges.".
- ADE_classification thumbnail Simply_Laced_Dynkin_Diagrams.svg?width=300.
- ADE_classification wikiPageExternalLink books?id=BLnRsA-wRsoC&pg=PA46.
- ADE_classification wikiPageExternalLink ADE.html.
- ADE_classification wikiPageExternalLink TWF.html.
- ADE_classification wikiPageExternalLink hazewinkel_et_al.pdf.
- ADE_classification wikiPageExternalLink week230.html.
- ADE_classification wikiPageExternalLink week62.html.
- ADE_classification wikiPageExternalLink week63.html.
- ADE_classification wikiPageExternalLink week64.html.
- ADE_classification wikiPageExternalLink week65.html.
- ADE_classification wikiPageExternalLink motls.blogspot.com.
- ADE_classification wikiPageExternalLink ade-classification-mckay.html.
- ADE_classification wikiPageExternalLink platonic-solids-binary-polyhedral-groups-kleinian-singularities-and-lie-algebras-of-type-ade.pdf.
- ADE_classification wikiPageExternalLink McKay.html.
- ADE_classification wikiPageID "648042".
- ADE_classification wikiPageRevisionID "604228362".
- ADE_classification hasPhotoCollection ADE_classification.
- ADE_classification subject Category:Lie_groups.
- ADE_classification type Abstraction100002137.
- ADE_classification type Group100031264.
- ADE_classification type LieGroups.
- ADE_classification comment "In mathematics, the ADE classification (originally A-D-E classifications) is the complete list of simply laced Dynkin diagrams or other mathematical objects satisfying analogous axioms; "simply laced" means that there are no multiple edges, which corresponds to all simple roots in the root system forming angles of (no edge between the vertices) or (single edge between the vertices).".
- ADE_classification label "ADE classification".
- ADE_classification label "Classification ADE".
- ADE_classification sameAs Classification_ADE.
- ADE_classification sameAs m.02_cb9.
- ADE_classification sameAs Q2976517.
- ADE_classification sameAs Q2976517.
- ADE_classification sameAs ADE_classification.
- ADE_classification wasDerivedFrom ADE_classification?oldid=604228362.
- ADE_classification depiction Simply_Laced_Dynkin_Diagrams.svg.
- ADE_classification isPrimaryTopicOf ADE_classification.