Matches in DBpedia 2014 for { <http://dbpedia.org/resource/AVL_tree> ?p ?o. }
Showing items 1 to 66 of
66
with 100 items per page.
- AVL_tree abstract "In computer science, an AVL tree (Adelson-Velskii and Landis' tree, named after the inventors) is a self-balancing binary search tree. It was the first such data structure to be invented. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Lookup, insertion, and deletion all take O(log n) time in both the average and worst cases, where n is the number of nodes in the tree prior to the operation. Insertions and deletions may require the tree to be rebalanced by one or more tree rotations.The AVL tree is named after its two Soviet inventors, G. M. Adelson-Velskii and E. M. Landis, who published it in their 1962 paper "An algorithm for the organization of information".AVL trees are often compared with red-black trees because both support the same set of operations and take O(log n) time for the basic operations. For lookup-intensive applications, AVL trees are faster than red-black trees because they are more rigidly balanced. Similar to red-black trees, AVL trees are height-balanced. Both are in general not weight-balanced nor μ-balanced for any that is, sibling nodes can have hugely differing numbers of descendants.↑ ↑ ↑ ↑".
- AVL_tree thumbnail AVLtreef.svg?width=300.
- AVL_tree wikiPageExternalLink self-balancing-avl-tree.
- AVL_tree wikiPageExternalLink libtree.
- AVL_tree wikiPageExternalLink python-avl-tree.
- AVL_tree wikiPageExternalLink tree.
- AVL_tree wikiPageExternalLink AVL-Binary-Tree-for-C.
- AVL_tree wikiPageExternalLink avltree.html.
- AVL_tree wikiPageExternalLink AVLTree.html.
- AVL_tree wikiPageExternalLink avl-tree_2001.
- AVL_tree wikiPageExternalLink php-sorted-collections.
- AVL_tree wikiPageExternalLink Rbppavl.
- AVL_tree wikiPageExternalLink wiki.
- AVL_tree wikiPageID "2118".
- AVL_tree wikiPageRevisionID "605667821".
- AVL_tree deleteAvg "O".
- AVL_tree deleteWorst "O".
- AVL_tree hasPhotoCollection AVL_tree.
- AVL_tree insertAvg "O".
- AVL_tree insertWorst "O".
- AVL_tree inventedBy "G. M. Adelson-Velskii and E. M. Landis".
- AVL_tree inventedYear "1962".
- AVL_tree name "AVL tree".
- AVL_tree searchAvg "O".
- AVL_tree searchWorst "O".
- AVL_tree spaceAvg "O".
- AVL_tree spaceWorst "O".
- AVL_tree type "tree".
- AVL_tree subject Category:1962_in_computer_science.
- AVL_tree subject Category:Binary_trees.
- AVL_tree subject Category:Soviet_inventions.
- AVL_tree type Abstraction100002137.
- AVL_tree type Arrangement105726596.
- AVL_tree type Cognition100023271.
- AVL_tree type DataStructure105728493.
- AVL_tree type PsychologicalFeature100023100.
- AVL_tree type Structure105726345.
- AVL_tree comment "In computer science, an AVL tree (Adelson-Velskii and Landis' tree, named after the inventors) is a self-balancing binary search tree. It was the first such data structure to be invented. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property.".
- AVL_tree label "AVL tree".
- AVL_tree label "AVL-Baum".
- AVL_tree label "AVL木".
- AVL_tree label "AVL树".
- AVL_tree label "Albero AVL".
- AVL_tree label "Arbre AVL".
- AVL_tree label "Drzewo AVL".
- AVL_tree label "Árbol AVL".
- AVL_tree label "Árvore AVL".
- AVL_tree label "АВЛ-дерево".
- AVL_tree label "شجرة AVL".
- AVL_tree sameAs AVL-strom.
- AVL_tree sameAs AVL-Baum.
- AVL_tree sameAs Árbol_AVL.
- AVL_tree sameAs Arbre_AVL.
- AVL_tree sameAs Pohon_AVL.
- AVL_tree sameAs Albero_AVL.
- AVL_tree sameAs AVL木.
- AVL_tree sameAs AVL_트리.
- AVL_tree sameAs Drzewo_AVL.
- AVL_tree sameAs Árvore_AVL.
- AVL_tree sameAs m.0wyp.
- AVL_tree sameAs Q300159.
- AVL_tree sameAs Q300159.
- AVL_tree sameAs AVL_tree.
- AVL_tree wasDerivedFrom AVL_tree?oldid=605667821.
- AVL_tree depiction AVLtreef.svg.
- AVL_tree isPrimaryTopicOf AVL_tree.