Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Abelian_category> ?p ?o. }
Showing items 1 to 39 of
39
with 100 items per page.
- Abelian_category abstract "In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototype example of an abelian category is the category of abelian groups, Ab. The theory originated in a tentative attempt to unify several cohomology theories by Alexander Grothendieck. Abelian categories are very stable categories, for example they are regular and they satisfy the snake lemma. The class of Abelian categories is closed under several categorical constructions, for example, the category of chain complexes of an Abelian category, or the category of functors from a small category to an Abelian category are Abelian as well. These stability properties make them inevitable in homological algebra and beyond; the theory has major applications in algebraic geometry, cohomology and pure category theory. Abelian categories are named after Niels Henrik Abel.".
- Abelian_category wikiPageExternalLink 1178244839.
- Abelian_category wikiPageExternalLink tr3abs.html.
- Abelian_category wikiPageID "45063".
- Abelian_category wikiPageRevisionID "594069645".
- Abelian_category hasPhotoCollection Abelian_category.
- Abelian_category subject Category:Additive_categories.
- Abelian_category subject Category:Homological_algebra.
- Abelian_category subject Category:Niels_Henrik_Abel.
- Abelian_category type Abstraction100002137.
- Abelian_category type AdditiveCategories.
- Abelian_category type Class107997703.
- Abelian_category type Collection107951464.
- Abelian_category type Group100031264.
- Abelian_category comment "In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototype example of an abelian category is the category of abelian groups, Ab. The theory originated in a tentative attempt to unify several cohomology theories by Alexander Grothendieck. Abelian categories are very stable categories, for example they are regular and they satisfy the snake lemma.".
- Abelian_category label "Abelian category".
- Abelian_category label "Abelsche Kategorie".
- Abelian_category label "Abelse categorie".
- Abelian_category label "Categoria abeliana".
- Abelian_category label "Categoría abeliana".
- Abelian_category label "Catégorie abélienne".
- Abelian_category label "Kategoria abelowa".
- Abelian_category label "Абелева категория".
- Abelian_category label "アーベル圏".
- Abelian_category label "阿貝爾範疇".
- Abelian_category sameAs Abelsche_Kategorie.
- Abelian_category sameAs Categoría_abeliana.
- Abelian_category sameAs Catégorie_abélienne.
- Abelian_category sameAs アーベル圏.
- Abelian_category sameAs 아벨_범주.
- Abelian_category sameAs Abelse_categorie.
- Abelian_category sameAs Kategoria_abelowa.
- Abelian_category sameAs Categoria_abeliana.
- Abelian_category sameAs m.0c87_.
- Abelian_category sameAs Q318737.
- Abelian_category sameAs Q318737.
- Abelian_category sameAs Abelian_category.
- Abelian_category wasDerivedFrom Abelian_category?oldid=594069645.
- Abelian_category isPrimaryTopicOf Abelian_category.