Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Affine_root_system> ?p ?o. }
Showing items 1 to 46 of
46
with 100 items per page.
- Affine_root_system abstract "In mathematics, an affine root system is a root system of affine-linear functions on a Euclidean space. They are used in the classification of affine Lie algebras and superalgebras, and semisimple p-adic algebraic groups, and correspond to families of Macdonald polynomials. The reduced affine root systems were used by Kac and Moody in their work on Kac–Moody algebras. Possibly non-reduced affine root systems were introduced and classified by Macdonald (1972) and Bruhat & Tits (1972) (except that both these papers accidentally omitted the Dynkin diagram File:Dyn-node.pngFile:Dyn-4b.pngFile:Dyn-nodeg.pngFile:Dyn-4a.pngFile:Dyn-node.png).".
- Affine_root_system thumbnail G2_affine_chamber.svg?width=300.
- Affine_root_system wikiPageExternalLink item?id=PMIHES_1972__41__5_0.
- Affine_root_system wikiPageID "32702474".
- Affine_root_system wikiPageRevisionID "550332484".
- Affine_root_system b "1".
- Affine_root_system b "2".
- Affine_root_system b "3".
- Affine_root_system b "4".
- Affine_root_system b "5".
- Affine_root_system b "6".
- Affine_root_system b "7".
- Affine_root_system b "8".
- Affine_root_system b "n".
- Affine_root_system hasPhotoCollection Affine_root_system.
- Affine_root_system p "∨".
- Affine_root_system subject Category:Discrete_groups.
- Affine_root_system subject Category:Lie_algebras.
- Affine_root_system subject Category:Orthogonal_polynomials.
- Affine_root_system type Abstraction100002137.
- Affine_root_system type Algebra106012726.
- Affine_root_system type Cognition100023271.
- Affine_root_system type Content105809192.
- Affine_root_system type Discipline105996646.
- Affine_root_system type DiscreteGroups.
- Affine_root_system type Function113783816.
- Affine_root_system type Group100031264.
- Affine_root_system type KnowledgeDomain105999266.
- Affine_root_system type LieAlgebras.
- Affine_root_system type MathematicalRelation113783581.
- Affine_root_system type Mathematics106000644.
- Affine_root_system type OrthogonalPolynomials.
- Affine_root_system type Polynomial105861855.
- Affine_root_system type PsychologicalFeature100023100.
- Affine_root_system type PureMathematics106003682.
- Affine_root_system type Relation100031921.
- Affine_root_system type Science105999797.
- Affine_root_system comment "In mathematics, an affine root system is a root system of affine-linear functions on a Euclidean space. They are used in the classification of affine Lie algebras and superalgebras, and semisimple p-adic algebraic groups, and correspond to families of Macdonald polynomials. The reduced affine root systems were used by Kac and Moody in their work on Kac–Moody algebras.".
- Affine_root_system label "Affine root system".
- Affine_root_system sameAs m.0h3mmt1.
- Affine_root_system sameAs Q4688949.
- Affine_root_system sameAs Q4688949.
- Affine_root_system sameAs Affine_root_system.
- Affine_root_system wasDerivedFrom Affine_root_system?oldid=550332484.
- Affine_root_system depiction G2_affine_chamber.svg.
- Affine_root_system isPrimaryTopicOf Affine_root_system.