Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Algebraically_compact_group> ?p ?o. }
Showing items 1 to 20 of
20
with 100 items per page.
- Algebraically_compact_group abstract "In mathematics, in the realm of abelian group theory, a group is said to be algebraically compact if it is a direct summand of every abelian group containing it as a pure subgroup.Equivalent characterizations of algebraic compactness: The group is complete in the adic topology. The group is pure injective, that is, injective with respect to exact sequences where the embedding is as a pure subgroup.Relations with other properties: A torsion-free group is cotorsion if and only if it is algebraically compact. Every injective group is algebraically compact. Ulm factors of cotorsion groups are algebraically compact.".
- Algebraically_compact_group wikiPageExternalLink W3W06361813J347X.pdf.
- Algebraically_compact_group wikiPageID "5739636".
- Algebraically_compact_group wikiPageRevisionID "336690922".
- Algebraically_compact_group hasPhotoCollection Algebraically_compact_group.
- Algebraically_compact_group subject Category:Abelian_group_theory.
- Algebraically_compact_group subject Category:Properties_of_groups.
- Algebraically_compact_group type Abstraction100002137.
- Algebraically_compact_group type Possession100032613.
- Algebraically_compact_group type PropertiesOfGroups.
- Algebraically_compact_group type Property113244109.
- Algebraically_compact_group type Relation100031921.
- Algebraically_compact_group comment "In mathematics, in the realm of abelian group theory, a group is said to be algebraically compact if it is a direct summand of every abelian group containing it as a pure subgroup.Equivalent characterizations of algebraic compactness: The group is complete in the adic topology.".
- Algebraically_compact_group label "Algebraically compact group".
- Algebraically_compact_group sameAs m.0f23y2.
- Algebraically_compact_group sameAs Q4724024.
- Algebraically_compact_group sameAs Q4724024.
- Algebraically_compact_group sameAs Algebraically_compact_group.
- Algebraically_compact_group wasDerivedFrom Algebraically_compact_group?oldid=336690922.
- Algebraically_compact_group isPrimaryTopicOf Algebraically_compact_group.