Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Almost_complex_manifold> ?p ?o. }
Showing items 1 to 39 of
39
with 100 items per page.
- Almost_complex_manifold abstract "In mathematics, an almost complex manifold is a smooth manifold equipped with smooth linear complex structure on each tangent space. The existence of this structure is a necessary, but not sufficient, condition for a manifold to be a complex manifold. That is, every complex manifold is an almost complex manifold, but not vice-versa. Almost complex structures have important applications in symplectic geometry.The concept is due to Ehresmann and Hopf in the 1940s.".
- Almost_complex_manifold wikiPageExternalLink hq3au3baggr3.
- Almost_complex_manifold wikiPageID "514258".
- Almost_complex_manifold wikiPageRevisionID "593441737".
- Almost_complex_manifold hasPhotoCollection Almost_complex_manifold.
- Almost_complex_manifold subject Category:Smooth_manifolds.
- Almost_complex_manifold type Artifact100021939.
- Almost_complex_manifold type Conduit103089014.
- Almost_complex_manifold type Manifold103717750.
- Almost_complex_manifold type Object100002684.
- Almost_complex_manifold type Passage103895293.
- Almost_complex_manifold type PhysicalEntity100001930.
- Almost_complex_manifold type Pipe103944672.
- Almost_complex_manifold type SmoothManifolds.
- Almost_complex_manifold type Tube104493505.
- Almost_complex_manifold type Way104564698.
- Almost_complex_manifold type Whole100003553.
- Almost_complex_manifold type YagoGeoEntity.
- Almost_complex_manifold type YagoPermanentlyLocatedEntity.
- Almost_complex_manifold comment "In mathematics, an almost complex manifold is a smooth manifold equipped with smooth linear complex structure on each tangent space. The existence of this structure is a necessary, but not sufficient, condition for a manifold to be a complex manifold. That is, every complex manifold is an almost complex manifold, but not vice-versa. Almost complex structures have important applications in symplectic geometry.The concept is due to Ehresmann and Hopf in the 1940s.".
- Almost_complex_manifold label "Almost complex manifold".
- Almost_complex_manifold label "Bijna complexe variëteit".
- Almost_complex_manifold label "Fastkomplexe Mannigfaltigkeit".
- Almost_complex_manifold label "Structure presque complexe".
- Almost_complex_manifold label "Variedad casi compleja".
- Almost_complex_manifold label "Почти комплексная структура".
- Almost_complex_manifold label "概複素構造".
- Almost_complex_manifold label "殆复流形".
- Almost_complex_manifold sameAs Fastkomplexe_Mannigfaltigkeit.
- Almost_complex_manifold sameAs Variedad_casi_compleja.
- Almost_complex_manifold sameAs Structure_presque_complexe.
- Almost_complex_manifold sameAs 概複素構造.
- Almost_complex_manifold sameAs Bijna_complexe_variëteit.
- Almost_complex_manifold sameAs m.02kcrl.
- Almost_complex_manifold sameAs Q2995691.
- Almost_complex_manifold sameAs Q2995691.
- Almost_complex_manifold sameAs Almost_complex_manifold.
- Almost_complex_manifold wasDerivedFrom Almost_complex_manifold?oldid=593441737.
- Almost_complex_manifold isPrimaryTopicOf Almost_complex_manifold.