Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Applicative_computing_systems> ?p ?o. }
Showing items 1 to 31 of
31
with 100 items per page.
- Applicative_computing_systems abstract "Applicative computing systems, or ACS are the systems of object calculi founded on combinatory logic and lambda calculus.The only essential notion which is under consideration in these systems is the representation of object. In combinatory logic the only metaoperator is application in a sense of applying one object to other. In lambda calculus two metaoperators are used: application – the same as in combinatory logic, and functional abstraction which binds the only variable in one object.".
- Applicative_computing_systems wikiPageExternalLink Wolfengagen_CLP-2003-En.djvu.
- Applicative_computing_systems wikiPageID "16957829".
- Applicative_computing_systems wikiPageRevisionID "603934178".
- Applicative_computing_systems hasPhotoCollection Applicative_computing_systems.
- Applicative_computing_systems subject Category:Applicative_computing_systems.
- Applicative_computing_systems subject Category:Combinatory_logic.
- Applicative_computing_systems subject Category:Lambda_calculus.
- Applicative_computing_systems subject Category:Models_of_computation.
- Applicative_computing_systems type Assistant109815790.
- Applicative_computing_systems type CausalAgent100007347.
- Applicative_computing_systems type LivingThing100004258.
- Applicative_computing_systems type Model110324560.
- Applicative_computing_systems type ModelsOfComputation.
- Applicative_computing_systems type Object100002684.
- Applicative_computing_systems type Organism100004475.
- Applicative_computing_systems type Person100007846.
- Applicative_computing_systems type PhysicalEntity100001930.
- Applicative_computing_systems type Whole100003553.
- Applicative_computing_systems type Worker109632518.
- Applicative_computing_systems type YagoLegalActor.
- Applicative_computing_systems type YagoLegalActorGeo.
- Applicative_computing_systems comment "Applicative computing systems, or ACS are the systems of object calculi founded on combinatory logic and lambda calculus.The only essential notion which is under consideration in these systems is the representation of object. In combinatory logic the only metaoperator is application in a sense of applying one object to other. In lambda calculus two metaoperators are used: application – the same as in combinatory logic, and functional abstraction which binds the only variable in one object.".
- Applicative_computing_systems label "Applicative computing systems".
- Applicative_computing_systems label "Аппликативные вычислительные системы".
- Applicative_computing_systems sameAs m.0413c16.
- Applicative_computing_systems sameAs Q4068178.
- Applicative_computing_systems sameAs Q4068178.
- Applicative_computing_systems sameAs Applicative_computing_systems.
- Applicative_computing_systems wasDerivedFrom Applicative_computing_systems?oldid=603934178.
- Applicative_computing_systems isPrimaryTopicOf Applicative_computing_systems.