Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Babenko–Beckner_inequality> ?p ?o. }
Showing items 1 to 10 of
10
with 100 items per page.
- Babenko–Beckner_inequality abstract "In mathematics, the Babenko–Beckner inequality (after K. Ivan Babenko and William E. Beckner) is a sharpened form of the Hausdorff–Young inequality having applications to uncertainty principles in the Fourier analysis of Lp spaces. The (q, p)-norm of the n-dimensional Fourier transform is defined to beIn 1961, Babenko found this norm for even integer values of q. Finally, in 1975,using Hermite functions as eigenfunctions of the Fourier transform, Beckner proved that the value of this norm for all isThus we have the Babenko–Beckner inequality thatTo write this out explicitly, (in the case of one dimension,) if the Fourier transform is normalized so thatthen we haveor more simply".
- Babenko–Beckner_inequality wikiPageID "20888637".
- Babenko–Beckner_inequality wikiPageRevisionID "569299036".
- Babenko–Beckner_inequality subject Category:Inequalities.
- Babenko–Beckner_inequality comment "In mathematics, the Babenko–Beckner inequality (after K. Ivan Babenko and William E. Beckner) is a sharpened form of the Hausdorff–Young inequality having applications to uncertainty principles in the Fourier analysis of Lp spaces. The (q, p)-norm of the n-dimensional Fourier transform is defined to beIn 1961, Babenko found this norm for even integer values of q.".
- Babenko–Beckner_inequality label "Babenko–Beckner inequality".
- Babenko–Beckner_inequality sameAs Babenko%E2%80%93Beckner_inequality.
- Babenko–Beckner_inequality sameAs Q4837774.
- Babenko–Beckner_inequality sameAs Q4837774.
- Babenko–Beckner_inequality wasDerivedFrom Babenko–Beckner_inequality?oldid=569299036.