Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Bernoulli_polynomials> ?p ?o. }
Showing items 1 to 37 of
37
with 100 items per page.
- Bernoulli_polynomials abstract "In mathematics, the Bernoulli polynomials occur in the study of many special functions and in particular the Riemann zeta function and the Hurwitz zeta function. This is in large part because they are an Appell sequence, i.e. a Sheffer sequence for the ordinary derivative operator. Unlike orthogonal polynomials, the Bernoulli polynomials are remarkable in that the number of crossings of the x-axis in the unit interval does not go up as the degree of the polynomials goes up. In the limit of large degree, the Bernoulli polynomials, appropriately scaled, approach the sine and cosine functions.".
- Bernoulli_polynomials thumbnail Bernoulli_polynomials.svg?width=300.
- Bernoulli_polynomials wikiPageExternalLink page_804.htm.
- Bernoulli_polynomials wikiPageID "228161".
- Bernoulli_polynomials wikiPageRevisionID "605524367".
- Bernoulli_polynomials first "K.".
- Bernoulli_polynomials hasPhotoCollection Bernoulli_polynomials.
- Bernoulli_polynomials id "24".
- Bernoulli_polynomials last "Dilcher".
- Bernoulli_polynomials title "Bernoulli and Euler Polynomials".
- Bernoulli_polynomials subject Category:Number_theory.
- Bernoulli_polynomials subject Category:Polynomials.
- Bernoulli_polynomials subject Category:Special_functions.
- Bernoulli_polynomials type Abstraction100002137.
- Bernoulli_polynomials type Function113783816.
- Bernoulli_polynomials type MathematicalRelation113783581.
- Bernoulli_polynomials type Polynomial105861855.
- Bernoulli_polynomials type Polynomials.
- Bernoulli_polynomials type Relation100031921.
- Bernoulli_polynomials type SpecialFunctions.
- Bernoulli_polynomials comment "In mathematics, the Bernoulli polynomials occur in the study of many special functions and in particular the Riemann zeta function and the Hurwitz zeta function. This is in large part because they are an Appell sequence, i.e. a Sheffer sequence for the ordinary derivative operator. Unlike orthogonal polynomials, the Bernoulli polynomials are remarkable in that the number of crossings of the x-axis in the unit interval does not go up as the degree of the polynomials goes up.".
- Bernoulli_polynomials label "Bernoulli polynomials".
- Bernoulli_polynomials label "Polinomio di Bernoulli".
- Bernoulli_polynomials label "Polinomios de Bernoulli".
- Bernoulli_polynomials label "Polynôme de Bernoulli".
- Bernoulli_polynomials label "Многочлены Бернулли".
- Bernoulli_polynomials label "伯努利多項式".
- Bernoulli_polynomials sameAs Polinomios_de_Bernoulli.
- Bernoulli_polynomials sameAs Polynôme_de_Bernoulli.
- Bernoulli_polynomials sameAs Polinomio_di_Bernoulli.
- Bernoulli_polynomials sameAs m.01h6y5.
- Bernoulli_polynomials sameAs Q2346201.
- Bernoulli_polynomials sameAs Q2346201.
- Bernoulli_polynomials sameAs Bernoulli_polynomials.
- Bernoulli_polynomials wasDerivedFrom Bernoulli_polynomials?oldid=605524367.
- Bernoulli_polynomials depiction Bernoulli_polynomials.svg.
- Bernoulli_polynomials isPrimaryTopicOf Bernoulli_polynomials.