Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Biconditional_introduction> ?p ?o. }
Showing items 1 to 32 of
32
with 100 items per page.
- Biconditional_introduction abstract "In propositional logic, biconditional introduction is a valid rule of inference. It allows for one to infer a biconditional from two conditional statements. The rule makes it possible to introduce a biconditional statement into a logical proof. If is true, and if is true, then one may infer that is true. For example, from the statements "if I'm breathing, then I'm alive" and "if I'm alive, then I'm breathing", it can be inferred that "I'm breathing if and only if I'm alive". Biconditional introduction is the converse of biconditional elimination. The rule can be stated formally as:where the rule is that wherever instances of "" and "" appear on lines of a proof, "" can validly be placed on a subsequent line.".
- Biconditional_introduction wikiPageID "4286".
- Biconditional_introduction wikiPageRevisionID "563093236".
- Biconditional_introduction hasPhotoCollection Biconditional_introduction.
- Biconditional_introduction subject Category:Rules_of_inference.
- Biconditional_introduction subject Category:Theorems_in_propositional_logic.
- Biconditional_introduction type Abstraction100002137.
- Biconditional_introduction type Cognition100023271.
- Biconditional_introduction type Communication100033020.
- Biconditional_introduction type Concept105835747.
- Biconditional_introduction type Content105809192.
- Biconditional_introduction type Idea105833840.
- Biconditional_introduction type Message106598915.
- Biconditional_introduction type Proposition106750804.
- Biconditional_introduction type PsychologicalFeature100023100.
- Biconditional_introduction type Rule105846054.
- Biconditional_introduction type RulesOfInference.
- Biconditional_introduction type Statement106722453.
- Biconditional_introduction type Theorem106752293.
- Biconditional_introduction type TheoremsInPropositionalLogic.
- Biconditional_introduction comment "In propositional logic, biconditional introduction is a valid rule of inference. It allows for one to infer a biconditional from two conditional statements. The rule makes it possible to introduce a biconditional statement into a logical proof. If is true, and if is true, then one may infer that is true. For example, from the statements "if I'm breathing, then I'm alive" and "if I'm alive, then I'm breathing", it can be inferred that "I'm breathing if and only if I'm alive".".
- Biconditional_introduction label "Biconditional introduction".
- Biconditional_introduction label "Introducción del bicondicional".
- Biconditional_introduction label "Introdução bicondicional".
- Biconditional_introduction sameAs Introducción_del_bicondicional.
- Biconditional_introduction sameAs Introdução_bicondicional.
- Biconditional_introduction sameAs m.01cs3.
- Biconditional_introduction sameAs Q4903714.
- Biconditional_introduction sameAs Q4903714.
- Biconditional_introduction sameAs Biconditional_introduction.
- Biconditional_introduction wasDerivedFrom Biconditional_introduction?oldid=563093236.
- Biconditional_introduction isPrimaryTopicOf Biconditional_introduction.