Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Binomial_theorem> ?p ?o. }
Showing items 1 to 47 of
47
with 100 items per page.
- Binomial_theorem abstract "In elementary algebra, the binomial theorem describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the power (x + y)n into a sum involving terms of the form axbyc, where the exponents b and c are nonnegative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending on n and b. When an exponent is zero, the corresponding power is usually omitted from the term. For example,The coefficient a in the term of axbyc is known as the binomial coefficient or (the two have the same value). These coefficients for varying n and b can be arranged to form Pascal's triangle. These numbers also arise in combinatorics, where gives the number of different combinations of b elements that can be chosen from an n-element set.".
- Binomial_theorem thumbnail Pascal's_triangle_5.svg?width=300.
- Binomial_theorem wikiPageExternalLink BinomialTheorem.
- Binomial_theorem wikiPageExternalLink BinomialTheoremStepByStep.
- Binomial_theorem wikiPageID "4677".
- Binomial_theorem wikiPageRevisionID "606360164".
- Binomial_theorem first "E.D.".
- Binomial_theorem hasPhotoCollection Binomial_theorem.
- Binomial_theorem id "338".
- Binomial_theorem id "Newton_binomial".
- Binomial_theorem last "Solomentsev".
- Binomial_theorem title "Newton binomial".
- Binomial_theorem title "inductive proof of binomial theorem".
- Binomial_theorem subject Category:Articles_containing_proofs.
- Binomial_theorem subject Category:Factorial_and_binomial_topics.
- Binomial_theorem subject Category:Theorems_in_algebra.
- Binomial_theorem comment "In elementary algebra, the binomial theorem describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the power (x + y)n into a sum involving terms of the form axbyc, where the exponents b and c are nonnegative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending on n and b. When an exponent is zero, the corresponding power is usually omitted from the term.".
- Binomial_theorem label "Binomial theorem".
- Binomial_theorem label "Binomischer Lehrsatz".
- Binomial_theorem label "Binomium van Newton".
- Binomial_theorem label "Binómio de Newton".
- Binomial_theorem label "Dwumian Newtona".
- Binomial_theorem label "Formule du binôme de Newton".
- Binomial_theorem label "Teorema binomiale".
- Binomial_theorem label "Teorema del binomio".
- Binomial_theorem label "Бином Ньютона".
- Binomial_theorem label "ثنائي حد الكرخي-نيوتن".
- Binomial_theorem label "二項定理".
- Binomial_theorem label "二项式定理".
- Binomial_theorem sameAs Binomická_věta.
- Binomial_theorem sameAs Binomischer_Lehrsatz.
- Binomial_theorem sameAs Teorema_del_binomio.
- Binomial_theorem sameAs Newtonen_binomio.
- Binomial_theorem sameAs Formule_du_binôme_de_Newton.
- Binomial_theorem sameAs Teorema_binomial.
- Binomial_theorem sameAs Teorema_binomiale.
- Binomial_theorem sameAs 二項定理.
- Binomial_theorem sameAs 이항정리.
- Binomial_theorem sameAs Binomium_van_Newton.
- Binomial_theorem sameAs Dwumian_Newtona.
- Binomial_theorem sameAs Binómio_de_Newton.
- Binomial_theorem sameAs m.01hc3.
- Binomial_theorem sameAs Q26708.
- Binomial_theorem sameAs Q26708.
- Binomial_theorem wasDerivedFrom Binomial_theorem?oldid=606360164.
- Binomial_theorem depiction Pascal's_triangle_5.svg.
- Binomial_theorem isPrimaryTopicOf Binomial_theorem.