Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Birthday_problem> ?p ?o. }
Showing items 1 to 74 of
74
with 100 items per page.
- Birthday_problem abstract "In probability theory, the birthday problem or birthday paradox concerns the probability that, in a set of n randomly chosen people, some pair of them will have the same birthday. By the pigeonhole principle, the probability reaches 100% when the number of people reaches 367 (since there are 366 possible birthdays, including February 29). However, 99.9% probability is reached with just 70 people, and 50% probability with 23 people. These conclusions include the assumption that each day of the year (except February 29) is equally probable for a birthday. The history of the problem is obscure, but W. W. Rouse Ball indicated (without citation) that it was first discussed by an "H. Davenport", almost certainly Harold Davenport.The mathematics behind this problem led to a well-known cryptographic attack called the birthday attack, which uses this probabilistic model to reduce the complexity of cracking a hash function.".
- Birthday_problem thumbnail Birthday_Paradox.svg?width=300.
- Birthday_problem wikiPageExternalLink understanding-the-birthday-paradox.
- Birthday_problem wikiPageExternalLink BirthdayProblem.html.
- Birthday_problem wikiPageExternalLink SOCR_EduMaterials_Activities_BirthdayExperiment.
- Birthday_problem wikiPageExternalLink ?p=402.
- Birthday_problem wikiPageExternalLink birthday.htm.
- Birthday_problem wikiPageExternalLink eurobirthdays.html.
- Birthday_problem wikiPageExternalLink matthews.pdf.
- Birthday_problem wikiPageID "73242".
- Birthday_problem wikiPageRevisionID "605429890".
- Birthday_problem hasPhotoCollection Birthday_problem.
- Birthday_problem title "Birthday Problem".
- Birthday_problem urlname "BirthdayProblem".
- Birthday_problem subject Category:Applied_probability.
- Birthday_problem subject Category:Birthdays.
- Birthday_problem subject Category:Mathematical_problems.
- Birthday_problem subject Category:Named_probability_problems.
- Birthday_problem subject Category:Probability_theory_paradoxes.
- Birthday_problem type Abstraction100002137.
- Birthday_problem type Anniversary115249799.
- Birthday_problem type Attribute100024264.
- Birthday_problem type Birthday115250178.
- Birthday_problem type Birthdays.
- Birthday_problem type CalendarDay115157041.
- Birthday_problem type Communication100033020.
- Birthday_problem type Condition113920835.
- Birthday_problem type Contradiction107206887.
- Birthday_problem type Day115157225.
- Birthday_problem type Difficulty114408086.
- Birthday_problem type Falsehood106756407.
- Birthday_problem type FundamentalQuantity113575869.
- Birthday_problem type MathematicalProblems.
- Birthday_problem type Measure100033615.
- Birthday_problem type Message106598915.
- Birthday_problem type NamedProbabilityProblems.
- Birthday_problem type Paradox106724559.
- Birthday_problem type ProbabilityTheoryParadoxes.
- Birthday_problem type Problem114410605.
- Birthday_problem type State100024720.
- Birthday_problem type Statement106722453.
- Birthday_problem type TimePeriod115113229.
- Birthday_problem comment "In probability theory, the birthday problem or birthday paradox concerns the probability that, in a set of n randomly chosen people, some pair of them will have the same birthday. By the pigeonhole principle, the probability reaches 100% when the number of people reaches 367 (since there are 366 possible birthdays, including February 29). However, 99.9% probability is reached with just 70 people, and 50% probability with 23 people.".
- Birthday_problem label "Birthday problem".
- Birthday_problem label "Geburtstagsparadoxon".
- Birthday_problem label "Paradoja del cumpleaños".
- Birthday_problem label "Paradoks dnia urodzin".
- Birthday_problem label "Paradosso del compleanno".
- Birthday_problem label "Paradoxe des anniversaires".
- Birthday_problem label "Paradoxo do aniversário".
- Birthday_problem label "Verjaardagenparadox".
- Birthday_problem label "Парадокс дней рождения".
- Birthday_problem label "معضلة يوم الميلاد".
- Birthday_problem label "生日問題".
- Birthday_problem label "誕生日のパラドックス".
- Birthday_problem sameAs Narozeninový_problém.
- Birthday_problem sameAs Geburtstagsparadoxon.
- Birthday_problem sameAs Παράδοξο_των_γενεθλίων.
- Birthday_problem sameAs Paradoja_del_cumpleaños.
- Birthday_problem sameAs Urtebetetzeen_ebazkizuna.
- Birthday_problem sameAs Paradoxe_des_anniversaires.
- Birthday_problem sameAs Paradosso_del_compleanno.
- Birthday_problem sameAs 誕生日のパラドックス.
- Birthday_problem sameAs 생일_문제.
- Birthday_problem sameAs Verjaardagenparadox.
- Birthday_problem sameAs Paradoks_dnia_urodzin.
- Birthday_problem sameAs Paradoxo_do_aniversário.
- Birthday_problem sameAs m.0jp97.
- Birthday_problem sameAs Q339000.
- Birthday_problem sameAs Q339000.
- Birthday_problem sameAs Birthday_problem.
- Birthday_problem wasDerivedFrom Birthday_problem?oldid=605429890.
- Birthday_problem depiction Birthday_Paradox.svg.
- Birthday_problem isPrimaryTopicOf Birthday_problem.