Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Blum_integer> ?p ?o. }
Showing items 1 to 27 of
27
with 100 items per page.
- Blum_integer abstract "In mathematics, a natural number n is a Blum integer if n = p×q is a semiprime for which p and q are distinct prime numbers congruent to 3 mod 4. That is, p and q must be of the form 4t+3, for some integer t. Integers of this form are referred to as Blum primes. This means that the factors of a Blum integer are Gaussian primes with no imaginary part. The first few Blum integers are21, 33, 57, 69, 77, 93, 129, 133, 141, 161, 177, ... (sequence A016105 in OEIS)Blum integers were named for computer scientist Manuel Blum.".
- Blum_integer wikiPageID "2218352".
- Blum_integer wikiPageRevisionID "564929054".
- Blum_integer hasPhotoCollection Blum_integer.
- Blum_integer subject Category:Integer_sequences.
- Blum_integer type Abstraction100002137.
- Blum_integer type Arrangement107938773.
- Blum_integer type Group100031264.
- Blum_integer type IntegerSequences.
- Blum_integer type Ordering108456993.
- Blum_integer type Sequence108459252.
- Blum_integer type Series108457976.
- Blum_integer comment "In mathematics, a natural number n is a Blum integer if n = p×q is a semiprime for which p and q are distinct prime numbers congruent to 3 mod 4. That is, p and q must be of the form 4t+3, for some integer t. Integers of this form are referred to as Blum primes. This means that the factors of a Blum integer are Gaussian primes with no imaginary part. The first few Blum integers are21, 33, 57, 69, 77, 93, 129, 133, 141, 161, 177, ...".
- Blum_integer label "Blum integer".
- Blum_integer label "Entier de Blum".
- Blum_integer label "Intero di Blum".
- Blum_integer label "ブラム数".
- Blum_integer sameAs Entier_de_Blum.
- Blum_integer sameAs Intero_di_Blum.
- Blum_integer sameAs ブラム数.
- Blum_integer sameAs 블럼_정수.
- Blum_integer sameAs m.06wsrt.
- Blum_integer sameAs Q904395.
- Blum_integer sameAs Q904395.
- Blum_integer sameAs Blum_integer.
- Blum_integer wasDerivedFrom Blum_integer?oldid=564929054.
- Blum_integer isPrimaryTopicOf Blum_integer.