Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Bunyakovsky_conjecture> ?p ?o. }
Showing items 1 to 33 of
33
with 100 items per page.
- Bunyakovsky_conjecture abstract "The Bunyakovsky conjecture (or Bouniakowsky conjecture) stated in 1857 by the Russian mathematician Viktor Bunyakovsky, asserts when a polynomial in one variable with positive degree and integer coefficients should have infinitely many prime values for positive integer inputs. Three necessary conditions are the leading coefficient of is positive, the polynomial is irreducible over the integers, and as runs over the positive integers the numbers should not share a common factor greater than 1.Bunyakovsky's conjecture is that these three conditions are sufficient: if satisfies the three conditions then is prime for infinitely many positive integers .We need the first condition because if the leading coefficient is negative then for all large , and thus is not a prime number for large positive integers . If we allow negative primes like -2, -3, -5,... to count as prime numbers then this first condition can be dropped; the second and third necessary conditions are more substantial, as we will see below, since they imply can be prime only finitely many times for reasons that are more serious than a sign problem.We need the second condition because if where the polynomials and have integral coefficients and are not then we have for all integers , so is composite for all large (because and take the values 0 and only finitely many times).The third condition, that the numbers have gcd 1, is the most technical sounding and is best understood by an example where it does not hold. Consider the polynomial . It has a positive leading coefficient and is irreducible, but is even for all integers , so the values of this polynomial are prime only finitely many times on the positive integers (namely when it takes the value 2, which is actually only at among positive integers). In practice, the easiest way to verify the third condition for a polynomial is to find one pair of positive integers and such that and are relatively prime: when this happens no integer greater than 1 can divide all values of on the positive integers because it would have to divide and .An example of Bunyakovsky's conjecture is the polynomial f(x) = x2 + 1, for which some of the prime values that it has on positive integers are listed below.That should be prime infinitely often is a problem first raised by Euler, and it is also the fifth Hardy–Littlewood conjecture.The third condition in Bunyakovsky's conjecture is saying that the set of integers has gcd 1. It is a surprise to most people at first that this is not the same as saying the coefficients of are relatively prime together, but the example of shows this. If the third condition in Bunyakovsky's conjecture holds then necessarily the coefficients of the polynomial are relatively prime (in fact, if the second condition holds then also the coefficients are relatively prime, since a common factor of the coefficients that is greater than 1 would mean the polynomial is reducible over the integers), but the converse is not true. As noted above, a practical way to prove the numbers have gcd 1 is to find a single pair of values that are relatively prime. A way of calculating the gcd of all the numbers when , even in the case of this number being greater than 1, is to rewrite as a linear combination of the binomial coefficient polynomials . If each is an integer then each is an integer and For example, , and the coefficients in the second formula have gcd 2, which is related to the fact that has even values on the integers. Using this gcd formula it can be proved is 1 if and only if there is some pair of positive integers and such that and are relatively prime. To date, the only case of Bunyakovsky's conjecture that has been proved is polynomials of degree 1. This is Dirichlet's theorem, which states that when and are relatively prime integers there are infinitely many prime numbers . This is Bunyakovsky's conjecture for (or if ).The third necessary condition in Bunyakovsky's conjecture for a linear polynomial is equivalent to and being relatively prime. Not a single case of Bunyakovsky's conjecture for degree greater than 1 is proved, although numerical evidence in higher degree is consistent with the conjecture.".
- Bunyakovsky_conjecture wikiPageID "12511846".
- Bunyakovsky_conjecture wikiPageRevisionID "586842144".
- Bunyakovsky_conjecture author Ed_Pegg,_Jr..
- Bunyakovsky_conjecture hasPhotoCollection Bunyakovsky_conjecture.
- Bunyakovsky_conjecture title "Bouniakowsky conjecture".
- Bunyakovsky_conjecture urlname "BouniakowskyConjecture".
- Bunyakovsky_conjecture subject Category:Conjectures_about_prime_numbers.
- Bunyakovsky_conjecture type Abstraction100002137.
- Bunyakovsky_conjecture type Cognition100023271.
- Bunyakovsky_conjecture type Concept105835747.
- Bunyakovsky_conjecture type ConjecturesAboutPrimeNumbers.
- Bunyakovsky_conjecture type Content105809192.
- Bunyakovsky_conjecture type Hypothesis105888929.
- Bunyakovsky_conjecture type Idea105833840.
- Bunyakovsky_conjecture type PsychologicalFeature100023100.
- Bunyakovsky_conjecture type Speculation105891783.
- Bunyakovsky_conjecture comment "The Bunyakovsky conjecture (or Bouniakowsky conjecture) stated in 1857 by the Russian mathematician Viktor Bunyakovsky, asserts when a polynomial in one variable with positive degree and integer coefficients should have infinitely many prime values for positive integer inputs.".
- Bunyakovsky_conjecture label "Bunyakovsky conjecture".
- Bunyakovsky_conjecture label "Congettura di Bunyakovsky".
- Bunyakovsky_conjecture label "Conjecture de Bouniakovski".
- Bunyakovsky_conjecture label "Гипотеза Буняковского".
- Bunyakovsky_conjecture label "ブニャコフスキー予想".
- Bunyakovsky_conjecture sameAs Conjecture_de_Bouniakovski.
- Bunyakovsky_conjecture sameAs Congettura_di_Bunyakovsky.
- Bunyakovsky_conjecture sameAs ブニャコフスキー予想.
- Bunyakovsky_conjecture sameAs 부냐콥스키_추측.
- Bunyakovsky_conjecture sameAs m.02w9rhc.
- Bunyakovsky_conjecture sameAs Q1139180.
- Bunyakovsky_conjecture sameAs Q1139180.
- Bunyakovsky_conjecture sameAs Bunyakovsky_conjecture.
- Bunyakovsky_conjecture wasDerivedFrom Bunyakovsky_conjecture?oldid=586842144.
- Bunyakovsky_conjecture isPrimaryTopicOf Bunyakovsky_conjecture.