Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Burnside_theorem> ?p ?o. }
Showing items 1 to 26 of
26
with 100 items per page.
- Burnside_theorem abstract "In mathematics, Burnside's theorem in group theory states that if G is a finite group of order where p and q are prime numbers, and a and b are non-negative integers, then G is solvable. Hence eachnon-Abelian finite simple group has order divisible by at least three distinct primes.".
- Burnside_theorem wikiPageID "1912650".
- Burnside_theorem wikiPageRevisionID "542539292".
- Burnside_theorem hasPhotoCollection Burnside_theorem.
- Burnside_theorem subject Category:Theorems_in_group_theory.
- Burnside_theorem type Abstraction100002137.
- Burnside_theorem type Communication100033020.
- Burnside_theorem type Message106598915.
- Burnside_theorem type Proposition106750804.
- Burnside_theorem type Statement106722453.
- Burnside_theorem type Theorem106752293.
- Burnside_theorem type TheoremsInAlgebra.
- Burnside_theorem type TheoremsInGroupTheory.
- Burnside_theorem comment "In mathematics, Burnside's theorem in group theory states that if G is a finite group of order where p and q are prime numbers, and a and b are non-negative integers, then G is solvable. Hence eachnon-Abelian finite simple group has order divisible by at least three distinct primes.".
- Burnside_theorem label "Burnside theorem".
- Burnside_theorem label "Stelling van Burnside".
- Burnside_theorem label "Théorème de Burnside (groupe résoluble)".
- Burnside_theorem label "Теорема Бёрнсайда".
- Burnside_theorem sameAs Théorème_de_Burnside_(groupe_résoluble).
- Burnside_theorem sameAs Stelling_van_Burnside.
- Burnside_theorem sameAs m.065njp.
- Burnside_theorem sameAs Q1996305.
- Burnside_theorem sameAs Q1996305.
- Burnside_theorem sameAs Burnside_theorem.
- Burnside_theorem wasDerivedFrom Burnside_theorem?oldid=542539292.
- Burnside_theorem isPrimaryTopicOf Burnside_theorem.