Matches in DBpedia 2014 for { <http://dbpedia.org/resource/CR_manifold> ?p ?o. }
Showing items 1 to 31 of
31
with 100 items per page.
- CR_manifold abstract "In mathematics, a CR manifold is a differentiable manifold together with a geometric structure modeled on that of a real hypersurface in a complex vector space, or more generally modeled on an edge of a wedge.Formally, a CR manifold is a differentiable manifold M together with a preferred complex distribution L, or in other words a subbundle of the complexified tangent bundle CTM = TM ⊗ C such that (L is formally integrable) (L is almost Lagrangian).The bundle L is called a CR structure on the manifold M.The abbreviation CR stands for Cauchy-Riemann or Complex-Real.".
- CR_manifold wikiPageExternalLink ?p=723d441f3aee4d4bb65e370e90b9c567&pi=0.
- CR_manifold wikiPageExternalLink yr0150m4tq64j465.
- CR_manifold wikiPageExternalLink show_sgw.
- CR_manifold wikiPageID "3131794".
- CR_manifold wikiPageRevisionID "567401613".
- CR_manifold hasPhotoCollection CR_manifold.
- CR_manifold subject Category:Smooth_manifolds.
- CR_manifold type Artifact100021939.
- CR_manifold type Conduit103089014.
- CR_manifold type Manifold103717750.
- CR_manifold type Object100002684.
- CR_manifold type Passage103895293.
- CR_manifold type PhysicalEntity100001930.
- CR_manifold type Pipe103944672.
- CR_manifold type SmoothManifolds.
- CR_manifold type Structure104341686.
- CR_manifold type StructuresOnManifolds.
- CR_manifold type Tube104493505.
- CR_manifold type Way104564698.
- CR_manifold type Whole100003553.
- CR_manifold type YagoGeoEntity.
- CR_manifold type YagoPermanentlyLocatedEntity.
- CR_manifold comment "In mathematics, a CR manifold is a differentiable manifold together with a geometric structure modeled on that of a real hypersurface in a complex vector space, or more generally modeled on an edge of a wedge.Formally, a CR manifold is a differentiable manifold M together with a preferred complex distribution L, or in other words a subbundle of the complexified tangent bundle CTM = TM ⊗ C such that (L is formally integrable) (L is almost Lagrangian).The bundle L is called a CR structure on the manifold M.The abbreviation CR stands for Cauchy-Riemann or Complex-Real.".
- CR_manifold label "CR manifold".
- CR_manifold sameAs m.08tgvd.
- CR_manifold sameAs Q5014001.
- CR_manifold sameAs Q5014001.
- CR_manifold sameAs CR_manifold.
- CR_manifold wasDerivedFrom CR_manifold?oldid=567401613.
- CR_manifold isPrimaryTopicOf CR_manifold.