Matches in DBpedia 2014 for { <http://dbpedia.org/resource/C_normal_subgroup> ?p ?o. }
Showing items 1 to 18 of
18
with 100 items per page.
- C_normal_subgroup abstract "In mathematics, in the field of group theory, a subgroup of a group is called c normal if there is a normal subgroup of such that and the intersection of and lies inside the normal core of .For a weakly c normal subgroup, we only require to be subnormal.Here are some facts on c normal subgroups:Every normal subgroup is c normalEvery retract is c normalEvery c normal subgroup is weakly c normal".
- C_normal_subgroup wikiPageID "3593786".
- C_normal_subgroup wikiPageRevisionID "468915359".
- C_normal_subgroup hasPhotoCollection C_normal_subgroup.
- C_normal_subgroup subject Category:Subgroup_properties.
- C_normal_subgroup type Abstraction100002137.
- C_normal_subgroup type Possession100032613.
- C_normal_subgroup type Property113244109.
- C_normal_subgroup type Relation100031921.
- C_normal_subgroup type SubgroupProperties.
- C_normal_subgroup comment "In mathematics, in the field of group theory, a subgroup of a group is called c normal if there is a normal subgroup of such that and the intersection of and lies inside the normal core of .For a weakly c normal subgroup, we only require to be subnormal.Here are some facts on c normal subgroups:Every normal subgroup is c normalEvery retract is c normalEvery c normal subgroup is weakly c normal".
- C_normal_subgroup label "C normal subgroup".
- C_normal_subgroup sameAs m.09nn2z.
- C_normal_subgroup sameAs Q5015134.
- C_normal_subgroup sameAs Q5015134.
- C_normal_subgroup sameAs C_normal_subgroup.
- C_normal_subgroup wasDerivedFrom C_normal_subgroup?oldid=468915359.
- C_normal_subgroup isPrimaryTopicOf C_normal_subgroup.