Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Circular_convolution> ?p ?o. }
Showing items 1 to 34 of
34
with 100 items per page.
- Circular_convolution abstract "The circular convolution, also known as cyclic convolution, of two aperiodic functions (i.e. Schwartz functions) occurs when one of them is convolved in the normal way with a periodic summation of the other function. That situation arises in the context of the Circular convolution theorem. The identical operation can also be expressed in terms of the periodic summations of both functions, if the infinite integration interval is reduced to just one period. That situation arises in the context of the discrete-time Fourier transform (DTFT) and is also called periodic convolution. In particular, the DTFT of the product of two discrete sequences is the periodic convolution of the DTFTs of the individual sequences.Let x be a function with a well-defined periodic summation, xT, where:If h is any other function for which the convolution xT ∗ h exists, then the convolution xT ∗ h is periodic and identical to:where to is an arbitrary parameter and hT is a periodic summation of h.The second integral is called the periodic convolution of functions xT and hT and is sometimes normalized by 1/T. When xT is expressed as the periodic summation of another function, x, the same operation may also be referred to as a circular convolution of functions h and x.".
- Circular_convolution thumbnail Circular_convolution_example.png?width=300.
- Circular_convolution wikiPageExternalLink books?id=QBT7nP7zTLgC&printsec=frontcover&dq=Priemer,+Roland&hl=en&sa=X&ei=J2owUZzANIb_ygGex4HAAg&ved=0CC8Q6AEwAA.
- Circular_convolution wikiPageExternalLink discrete_time_signal_processing_a02.html.
- Circular_convolution wikiPageExternalLink real_time_digital_signal_processing_a05.html.
- Circular_convolution wikiPageExternalLink simulation_of_communication_systems_a01.html.
- Circular_convolution wikiPageExternalLink theory_and_application_of_digital_signal_processing.html.
- Circular_convolution wikiPageID "3367262".
- Circular_convolution wikiPageRevisionID "590331757".
- Circular_convolution hasPhotoCollection Circular_convolution.
- Circular_convolution subject Category:Binary_operations.
- Circular_convolution subject Category:Functional_analysis.
- Circular_convolution subject Category:Image_processing.
- Circular_convolution type BinaryOperations.
- Circular_convolution type BooleanOperation113440935.
- Circular_convolution type DataProcessing113455487.
- Circular_convolution type Operation113524925.
- Circular_convolution type PhysicalEntity100001930.
- Circular_convolution type Process100029677.
- Circular_convolution type Processing113541167.
- Circular_convolution comment "The circular convolution, also known as cyclic convolution, of two aperiodic functions (i.e. Schwartz functions) occurs when one of them is convolved in the normal way with a periodic summation of the other function. That situation arises in the context of the Circular convolution theorem. The identical operation can also be expressed in terms of the periodic summations of both functions, if the infinite integration interval is reduced to just one period.".
- Circular_convolution label "Circular convolution".
- Circular_convolution label "Zyklische Faltung".
- Circular_convolution label "圓周摺積".
- Circular_convolution label "巡回畳み込み".
- Circular_convolution sameAs Zyklische_Faltung.
- Circular_convolution sameAs 巡回畳み込み.
- Circular_convolution sameAs m.097ylm.
- Circular_convolution sameAs Q245450.
- Circular_convolution sameAs Q245450.
- Circular_convolution sameAs Circular_convolution.
- Circular_convolution wasDerivedFrom Circular_convolution?oldid=590331757.
- Circular_convolution depiction Circular_convolution_example.png.
- Circular_convolution isPrimaryTopicOf Circular_convolution.