Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Compact_closed_category> ?p ?o. }
Showing items 1 to 20 of
20
with 100 items per page.
- Compact_closed_category abstract "In category theory, compact closed categories are a general context for treating dual objects. The idea of a dual object generalizes the more familiar concept of the dual of a finite-dimensional vector space. So, the motivating example of a compact closed category is FdVect, the category with finite-dimensional vector spaces as objects and linear maps as morphisms.".
- Compact_closed_category wikiPageID "5557623".
- Compact_closed_category wikiPageRevisionID "598769519".
- Compact_closed_category hasPhotoCollection Compact_closed_category.
- Compact_closed_category subject Category:Closed_categories.
- Compact_closed_category subject Category:Monoidal_categories.
- Compact_closed_category type Abstraction100002137.
- Compact_closed_category type Class107997703.
- Compact_closed_category type ClosedCategories.
- Compact_closed_category type Collection107951464.
- Compact_closed_category type Group100031264.
- Compact_closed_category type MonoidalCategories.
- Compact_closed_category comment "In category theory, compact closed categories are a general context for treating dual objects. The idea of a dual object generalizes the more familiar concept of the dual of a finite-dimensional vector space. So, the motivating example of a compact closed category is FdVect, the category with finite-dimensional vector spaces as objects and linear maps as morphisms.".
- Compact_closed_category label "Compact closed category".
- Compact_closed_category sameAs m.0dsfyt.
- Compact_closed_category sameAs Q5155301.
- Compact_closed_category sameAs Q5155301.
- Compact_closed_category sameAs Compact_closed_category.
- Compact_closed_category wasDerivedFrom Compact_closed_category?oldid=598769519.
- Compact_closed_category isPrimaryTopicOf Compact_closed_category.