Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Compact_group> ?p ?o. }
Showing items 1 to 28 of
28
with 100 items per page.
- Compact_group abstract "In mathematics, a compact (topological, often understood) group is a topological group whose topology is compact. Compact groups are a natural generalisation of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory.In the following we will assume all groups are Hausdorff spaces.".
- Compact_group thumbnail Circle_as_Lie_group.svg?width=300.
- Compact_group wikiPageID "750326".
- Compact_group wikiPageRevisionID "605993192".
- Compact_group hasPhotoCollection Compact_group.
- Compact_group subject Category:Fourier_analysis.
- Compact_group subject Category:Lie_groups.
- Compact_group subject Category:Topological_groups.
- Compact_group type Abstraction100002137.
- Compact_group type Group100031264.
- Compact_group type LieGroups.
- Compact_group type TopologicalGroups.
- Compact_group comment "In mathematics, a compact (topological, often understood) group is a topological group whose topology is compact. Compact groups are a natural generalisation of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory.In the following we will assume all groups are Hausdorff spaces.".
- Compact_group label "Compact group".
- Compact_group label "Compacte groep".
- Compact_group label "Groupe compact".
- Compact_group label "Grupo compacto".
- Compact_group label "緊群".
- Compact_group sameAs Groupe_compact.
- Compact_group sameAs Compacte_groep.
- Compact_group sameAs Grupo_compacto.
- Compact_group sameAs m.03855s.
- Compact_group sameAs Q1887083.
- Compact_group sameAs Q1887083.
- Compact_group sameAs Compact_group.
- Compact_group wasDerivedFrom Compact_group?oldid=605993192.
- Compact_group depiction Circle_as_Lie_group.svg.
- Compact_group isPrimaryTopicOf Compact_group.