Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Complete_group> ?p ?o. }
Showing items 1 to 24 of
24
with 100 items per page.
- Complete_group abstract "In mathematics, a group G is said to be complete if every automorphism of G is inner, and the group is a centerless group; that is, it has a trivial outer automorphism group and trivial center.Equivalently, a group is complete if the conjugation map G → Aut(G) (sending an element g to conjugation by g) is an isomorphism: one-to-one implies centerless, as no inner automorphisms are the identity, while onto corresponds to no outer automorphisms.".
- Complete_group wikiPageExternalLink 9808094v1.
- Complete_group wikiPageID "876770".
- Complete_group wikiPageRevisionID "594747905".
- Complete_group hasPhotoCollection Complete_group.
- Complete_group subject Category:Properties_of_groups.
- Complete_group type Abstraction100002137.
- Complete_group type Possession100032613.
- Complete_group type PropertiesOfGroups.
- Complete_group type Property113244109.
- Complete_group type Relation100031921.
- Complete_group comment "In mathematics, a group G is said to be complete if every automorphism of G is inner, and the group is a centerless group; that is, it has a trivial outer automorphism group and trivial center.Equivalently, a group is complete if the conjugation map G → Aut(G) (sending an element g to conjugation by g) is an isomorphism: one-to-one implies centerless, as no inner automorphisms are the identity, while onto corresponds to no outer automorphisms.".
- Complete_group label "Complete group".
- Complete_group label "Groupe complet".
- Complete_group label "Grupa pełna".
- Complete_group label "完備群".
- Complete_group sameAs Groupe_complet.
- Complete_group sameAs Grupa_pełna.
- Complete_group sameAs m.03kx9c.
- Complete_group sameAs Q968707.
- Complete_group sameAs Q968707.
- Complete_group sameAs Complete_group.
- Complete_group wasDerivedFrom Complete_group?oldid=594747905.
- Complete_group isPrimaryTopicOf Complete_group.