Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Component_theorem> ?p ?o. }
Showing items 1 to 24 of
24
with 100 items per page.
- Component_theorem abstract "In the mathematical classification of finite simple groups, the component theorem of Aschbacher (1975, 1976) shows that if G is a simple group of odd type, and various other assumptions are satisfied, then G has a centralizer of an involution with a "standard component" with small centralizer.".
- Component_theorem wikiPageExternalLink 1256050927.
- Component_theorem wikiPageID "29598950".
- Component_theorem wikiPageRevisionID "474237859".
- Component_theorem hasPhotoCollection Component_theorem.
- Component_theorem subject Category:Finite_groups.
- Component_theorem subject Category:Theorems_in_group_theory.
- Component_theorem type Abstraction100002137.
- Component_theorem type Communication100033020.
- Component_theorem type FiniteGroups.
- Component_theorem type Group100031264.
- Component_theorem type Message106598915.
- Component_theorem type Proposition106750804.
- Component_theorem type Statement106722453.
- Component_theorem type Theorem106752293.
- Component_theorem type TheoremsInGroupTheory.
- Component_theorem comment "In the mathematical classification of finite simple groups, the component theorem of Aschbacher (1975, 1976) shows that if G is a simple group of odd type, and various other assumptions are satisfied, then G has a centralizer of an involution with a "standard component" with small centralizer.".
- Component_theorem label "Component theorem".
- Component_theorem sameAs m.0fph2ck.
- Component_theorem sameAs Q5156702.
- Component_theorem sameAs Q5156702.
- Component_theorem sameAs Component_theorem.
- Component_theorem wasDerivedFrom Component_theorem?oldid=474237859.
- Component_theorem isPrimaryTopicOf Component_theorem.