Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Confluent_hypergeometric_function> ?p ?o. }
Showing items 1 to 40 of
40
with 100 items per page.
- Confluent_hypergeometric_function abstract "In mathematics, a confluent hypergeometric function is a solution of a confluent hypergeometric equation, which is a degenerate form of a hypergeometric differential equation where two of the three regular singularities merge into an irregular singularity. (The term "confluent" refers to the merging of singular points of families of differential equations; "confluere" is Latin for "to flow together".) There are several common standard forms of confluent hypergeometric functions:Kummer's (confluent hypergeometric) function M(a,b,z), introduced by Kummer (1837), is a solution to Kummer's differential equation. There is a different and unrelated Kummer's function bearing the same name.Tricomi's (confluent hypergeometric) function U(a;b;z) introduced by Francesco Tricomi (1947), sometimes denoted by Ψ(a;b;.z), is another solution to Kummer's equation. Whittaker functions (for Edmund Taylor Whittaker) are solutions to Whittaker's equation.Coulomb wave functions are solutions to the Coulomb wave equation.The Kummer functions, Whittaker functions, and Coulomb wave functions are essentially the same, and differ from each other only by elementary functions and change of variables.".
- Confluent_hypergeometric_function wikiPageExternalLink 13.
- Confluent_hypergeometric_function wikiPageExternalLink Hypergeometric1F1.
- Confluent_hypergeometric_function wikiPageExternalLink HypergeometricU.
- Confluent_hypergeometric_function wikiPageExternalLink purl?GDZPPN002141329.
- Confluent_hypergeometric_function wikiPageID "1516095".
- Confluent_hypergeometric_function wikiPageRevisionID "599295422".
- Confluent_hypergeometric_function authorlink "Francesco Tricomi".
- Confluent_hypergeometric_function b "2".
- Confluent_hypergeometric_function first "Adri B. Olde".
- Confluent_hypergeometric_function first "E.A.".
- Confluent_hypergeometric_function first "Francesco".
- Confluent_hypergeometric_function hasPhotoCollection Confluent_hypergeometric_function.
- Confluent_hypergeometric_function id "13".
- Confluent_hypergeometric_function id "c/c024700".
- Confluent_hypergeometric_function last "Chistova".
- Confluent_hypergeometric_function last "Daalhuis".
- Confluent_hypergeometric_function last "Tricomi".
- Confluent_hypergeometric_function p "4".
- Confluent_hypergeometric_function year "1947".
- Confluent_hypergeometric_function subject Category:Hypergeometric_functions.
- Confluent_hypergeometric_function subject Category:Special_hypergeometric_functions.
- Confluent_hypergeometric_function type Abstraction100002137.
- Confluent_hypergeometric_function type Function113783816.
- Confluent_hypergeometric_function type HypergeometricFunctions.
- Confluent_hypergeometric_function type MathematicalRelation113783581.
- Confluent_hypergeometric_function type Relation100031921.
- Confluent_hypergeometric_function type SpecialHypergeometricFunctions.
- Confluent_hypergeometric_function comment "In mathematics, a confluent hypergeometric function is a solution of a confluent hypergeometric equation, which is a degenerate form of a hypergeometric differential equation where two of the three regular singularities merge into an irregular singularity.".
- Confluent_hypergeometric_function label "Confluent hypergeometric function".
- Confluent_hypergeometric_function label "Equazione ipergeometrica confluente".
- Confluent_hypergeometric_function label "Fonction hypergéométrique confluente".
- Confluent_hypergeometric_function sameAs Fonction_hypergéométrique_confluente.
- Confluent_hypergeometric_function sameAs Equazione_ipergeometrica_confluente.
- Confluent_hypergeometric_function sameAs m.057912.
- Confluent_hypergeometric_function sameAs Q783948.
- Confluent_hypergeometric_function sameAs Q783948.
- Confluent_hypergeometric_function sameAs Confluent_hypergeometric_function.
- Confluent_hypergeometric_function wasDerivedFrom Confluent_hypergeometric_function?oldid=599295422.
- Confluent_hypergeometric_function isPrimaryTopicOf Confluent_hypergeometric_function.