Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Conformally_flat_manifold> ?p ?o. }
Showing items 1 to 28 of
28
with 100 items per page.
- Conformally_flat_manifold abstract "A (pseudo-)Riemannian manifold is conformally flat if each point has a neighborhood that can be mapped to flat space by a conformal transformation. More formally, let (M, g) be a pseudo-Riemannian manifold. Then (M, g) is conformally flat if for each point x in M, there exists a neighborhood U of x and a smooth function f defined on U such that (U, e2fg) is flat (i.e. the curvature of e2fg vanishes on U). The function f need not be defined on all of M.Some authors use locally conformally flat to describe the above notion and reserve conformally flat for the case in which the function f is defined on all of M.".
- Conformally_flat_manifold wikiPageID "3415428".
- Conformally_flat_manifold wikiPageRevisionID "511847050".
- Conformally_flat_manifold hasPhotoCollection Conformally_flat_manifold.
- Conformally_flat_manifold subject Category:Conformal_geometry.
- Conformally_flat_manifold subject Category:Manifolds.
- Conformally_flat_manifold subject Category:Riemannian_geometry.
- Conformally_flat_manifold type Artifact100021939.
- Conformally_flat_manifold type Conduit103089014.
- Conformally_flat_manifold type Manifold103717750.
- Conformally_flat_manifold type Manifolds.
- Conformally_flat_manifold type Object100002684.
- Conformally_flat_manifold type Passage103895293.
- Conformally_flat_manifold type PhysicalEntity100001930.
- Conformally_flat_manifold type Pipe103944672.
- Conformally_flat_manifold type Tube104493505.
- Conformally_flat_manifold type Way104564698.
- Conformally_flat_manifold type Whole100003553.
- Conformally_flat_manifold type YagoGeoEntity.
- Conformally_flat_manifold type YagoPermanentlyLocatedEntity.
- Conformally_flat_manifold comment "A (pseudo-)Riemannian manifold is conformally flat if each point has a neighborhood that can be mapped to flat space by a conformal transformation. More formally, let (M, g) be a pseudo-Riemannian manifold. Then (M, g) is conformally flat if for each point x in M, there exists a neighborhood U of x and a smooth function f defined on U such that (U, e2fg) is flat (i.e. the curvature of e2fg vanishes on U).".
- Conformally_flat_manifold label "Conformally flat manifold".
- Conformally_flat_manifold sameAs m.09b98t.
- Conformally_flat_manifold sameAs Q5160259.
- Conformally_flat_manifold sameAs Q5160259.
- Conformally_flat_manifold sameAs Conformally_flat_manifold.
- Conformally_flat_manifold wasDerivedFrom Conformally_flat_manifold?oldid=511847050.
- Conformally_flat_manifold isPrimaryTopicOf Conformally_flat_manifold.