Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Contranormal_subgroup> ?p ?o. }
Showing items 1 to 19 of
19
with 100 items per page.
- Contranormal_subgroup abstract "In mathematics, in the field of group theory, a contranormal subgroup is a subgroup whosenormal closure in the group is the whole group. Clearly, a contranormal subgroup can be normal only if it is the whole group.Some facts: Every subgroup of a finite group is a contranormal subgroup of a subnormal subgroup. In general, every subgroup of a group is a contranormal subgroup of a descendant subgroup. Every abnormal subgroup is contranormal.↑".
- Contranormal_subgroup wikiPageExternalLink purl?GDZPPN002402750.
- Contranormal_subgroup wikiPageID "3593761".
- Contranormal_subgroup wikiPageRevisionID "598728556".
- Contranormal_subgroup hasPhotoCollection Contranormal_subgroup.
- Contranormal_subgroup subject Category:Subgroup_properties.
- Contranormal_subgroup type Abstraction100002137.
- Contranormal_subgroup type Possession100032613.
- Contranormal_subgroup type Property113244109.
- Contranormal_subgroup type Relation100031921.
- Contranormal_subgroup type SubgroupProperties.
- Contranormal_subgroup comment "In mathematics, in the field of group theory, a contranormal subgroup is a subgroup whosenormal closure in the group is the whole group. Clearly, a contranormal subgroup can be normal only if it is the whole group.Some facts: Every subgroup of a finite group is a contranormal subgroup of a subnormal subgroup. In general, every subgroup of a group is a contranormal subgroup of a descendant subgroup. Every abnormal subgroup is contranormal.↑".
- Contranormal_subgroup label "Contranormal subgroup".
- Contranormal_subgroup sameAs m.09nn0x.
- Contranormal_subgroup sameAs Q5165734.
- Contranormal_subgroup sameAs Q5165734.
- Contranormal_subgroup sameAs Contranormal_subgroup.
- Contranormal_subgroup wasDerivedFrom Contranormal_subgroup?oldid=598728556.
- Contranormal_subgroup isPrimaryTopicOf Contranormal_subgroup.