Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Converse_theorem> ?p ?o. }
Showing items 1 to 23 of
23
with 100 items per page.
- Converse_theorem abstract "In the mathematical theory of automorphic forms, a converse theorem gives sufficient conditions for a Dirichlet series to be the Mellin transform of a modular form. More generally a converse theorem states that a representation of an algebraic group over the adeles is automorphic whenever the L-functions of various twists of it are well behaved.".
- Converse_theorem wikiPageExternalLink ICM2002.2.
- Converse_theorem wikiPageExternalLink ~cogdell.
- Converse_theorem wikiPageExternalLink item?id=PMIHES_1994__79__157_0.
- Converse_theorem wikiPageID "29554685".
- Converse_theorem wikiPageRevisionID "603820237".
- Converse_theorem hasPhotoCollection Converse_theorem.
- Converse_theorem subject Category:Automorphic_forms.
- Converse_theorem type Abstraction100002137.
- Converse_theorem type AutomorphicForms.
- Converse_theorem type Form106290637.
- Converse_theorem type LanguageUnit106284225.
- Converse_theorem type Part113809207.
- Converse_theorem type Relation100031921.
- Converse_theorem type Word106286395.
- Converse_theorem comment "In the mathematical theory of automorphic forms, a converse theorem gives sufficient conditions for a Dirichlet series to be the Mellin transform of a modular form. More generally a converse theorem states that a representation of an algebraic group over the adeles is automorphic whenever the L-functions of various twists of it are well behaved.".
- Converse_theorem label "Converse theorem".
- Converse_theorem sameAs m.0drwyl0.
- Converse_theorem sameAs Q5166461.
- Converse_theorem sameAs Q5166461.
- Converse_theorem sameAs Converse_theorem.
- Converse_theorem wasDerivedFrom Converse_theorem?oldid=603820237.
- Converse_theorem isPrimaryTopicOf Converse_theorem.