Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Countably_compact_space> ?p ?o. }
Showing items 1 to 24 of
24
with 100 items per page.
- Countably_compact_space abstract "In mathematics a topological space is countably compact if every countable open cover has a finite subcover.".
- Countably_compact_space wikiPageID "8293816".
- Countably_compact_space wikiPageRevisionID "544615085".
- Countably_compact_space hasPhotoCollection Countably_compact_space.
- Countably_compact_space subject Category:Topological_spaces.
- Countably_compact_space type Abstraction100002137.
- Countably_compact_space type Attribute100024264.
- Countably_compact_space type MathematicalSpace108001685.
- Countably_compact_space type Set107999699.
- Countably_compact_space type Space100028651.
- Countably_compact_space type TopologicalSpaces.
- Countably_compact_space comment "In mathematics a topological space is countably compact if every countable open cover has a finite subcover.".
- Countably_compact_space label "Countably compact space".
- Countably_compact_space label "Espace dénombrablement compact".
- Countably_compact_space label "Przestrzeń przeliczalnie zwarta".
- Countably_compact_space sameAs Espace_dénombrablement_compact.
- Countably_compact_space sameAs 가산콤팩트_공간.
- Countably_compact_space sameAs Przestrzeń_przeliczalnie_zwarta.
- Countably_compact_space sameAs m.04czc8m.
- Countably_compact_space sameAs Q859275.
- Countably_compact_space sameAs Q859275.
- Countably_compact_space sameAs Countably_compact_space.
- Countably_compact_space wasDerivedFrom Countably_compact_space?oldid=544615085.
- Countably_compact_space isPrimaryTopicOf Countably_compact_space.