Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Damgård–Jurik_cryptosystem> ?p ?o. }
Showing items 1 to 12 of
12
with 100 items per page.
- Damgård–Jurik_cryptosystem abstract "The Damgård–Jurik cryptosystem is a generalization of the Paillier cryptosystem. It uses computations modulo where is an RSA modulus and a (positive) natural number. Paillier's scheme is the special case with . The order (Euler's totient function) of can be divided by . Moreover can be written as the direct product of . is cyclic and of order , while is isomorphic to . For encryption, the message is transformed into the corresponding coset of the factor group and the security of the scheme relies on the difficulty of distinguishing random elements in different cosets of . It is semantically secure if it is hard to decide if two given elements are in the same coset. Like Paillier, the security of Damgård–Jurik can be proven under the decisional composite residuosity assumption.".
- Damgård–Jurik_cryptosystem wikiPageID "6856307".
- Damgård–Jurik_cryptosystem wikiPageRevisionID "569581354".
- Damgård–Jurik_cryptosystem subject Category:Public-key_encryption_schemes.
- Damgård–Jurik_cryptosystem comment "The Damgård–Jurik cryptosystem is a generalization of the Paillier cryptosystem. It uses computations modulo where is an RSA modulus and a (positive) natural number. Paillier's scheme is the special case with . The order (Euler's totient function) of can be divided by . Moreover can be written as the direct product of . is cyclic and of order , while is isomorphic to .".
- Damgård–Jurik_cryptosystem label "Damgård-Jurik-Kryptosystem".
- Damgård–Jurik_cryptosystem label "Damgård–Jurik cryptosystem".
- Damgård–Jurik_cryptosystem sameAs Damg%C3%A5rd%E2%80%93Jurik_cryptosystem.
- Damgård–Jurik_cryptosystem sameAs Damgård-Jurik-Kryptosystem.
- Damgård–Jurik_cryptosystem sameAs Q1158421.
- Damgård–Jurik_cryptosystem sameAs Q1158421.
- Damgård–Jurik_cryptosystem wasDerivedFrom Damgård–Jurik_cryptosystem?oldid=569581354.