Matches in DBpedia 2014 for { <http://dbpedia.org/resource/De_Bruijn_sequence> ?p ?o. }
Showing items 1 to 47 of
47
with 100 items per page.
- De_Bruijn_sequence abstract "In combinatorial mathematics, a k-ary De Bruijn sequence B(k, n) of order n, named after the Dutch mathematician Nicolaas Govert de Bruijn, is a cyclic sequence of a given alphabet A with size k for which every possible subsequence of length n in A appears as a sequence of consecutive characters exactly once.Each B(k, n) has length kn.There are distinct De Bruijn sequences B(k, n).According to De Bruijn himself, the existence of De Bruijn sequences for each order together with the above properties were first proved, for the case of alphabets with two elements, by Camille Flye Sainte-Marie in 1894, whereas the generalization to larger alphabets is originally due to Tanja van Aardenne-Ehrenfest and himself.".
- De_Bruijn_sequence thumbnail De_Bruijn_sequence.svg?width=300.
- De_Bruijn_sequence wikiPageExternalLink 252901.pdf.
- De_Bruijn_sequence wikiPageExternalLink 597493.pdf.
- De_Bruijn_sequence wikiPageExternalLink De+Bruijn+sequence.
- De_Bruijn_sequence wikiPageExternalLink Minimal_arrays_containing_all_combinations.html.
- De_Bruijn_sequence wikiPageExternalLink DBTP.pdf.
- De_Bruijn_sequence wikiPageExternalLink 2007Origins.pdf.
- De_Bruijn_sequence wikiPageExternalLink S0002-9904-1934-05988-3.pdf.
- De_Bruijn_sequence wikiPageExternalLink PU00018235.pdf.
- De_Bruijn_sequence wikiPageExternalLink deBruijnApplet.html.
- De_Bruijn_sequence wikiPageExternalLink debruijn.cgi.
- De_Bruijn_sequence wikiPageExternalLink 000435.html.
- De_Bruijn_sequence wikiPageExternalLink ~cos.
- De_Bruijn_sequence wikiPageID "1565267".
- De_Bruijn_sequence wikiPageRevisionID "604146599".
- De_Bruijn_sequence hasPhotoCollection De_Bruijn_sequence.
- De_Bruijn_sequence name "Lexicographically smallest binary de Bruijn sequences".
- De_Bruijn_sequence sequencenumber "A166315".
- De_Bruijn_sequence title "de Bruijn Sequence".
- De_Bruijn_sequence urlname "deBruijnSequence".
- De_Bruijn_sequence subject Category:Articles_with_example_Python_code.
- De_Bruijn_sequence subject Category:Binary_sequences.
- De_Bruijn_sequence subject Category:Enumerative_combinatorics.
- De_Bruijn_sequence type Abstraction100002137.
- De_Bruijn_sequence type Arrangement107938773.
- De_Bruijn_sequence type BinarySequences.
- De_Bruijn_sequence type Group100031264.
- De_Bruijn_sequence type Ordering108456993.
- De_Bruijn_sequence type Sequence108459252.
- De_Bruijn_sequence type Series108457976.
- De_Bruijn_sequence comment "In combinatorial mathematics, a k-ary De Bruijn sequence B(k, n) of order n, named after the Dutch mathematician Nicolaas Govert de Bruijn, is a cyclic sequence of a given alphabet A with size k for which every possible subsequence of length n in A appears as a sequence of consecutive characters exactly once.Each B(k, n) has length kn.There are distinct De Bruijn sequences B(k, n).According to De Bruijn himself, the existence of De Bruijn sequences for each order together with the above properties were first proved, for the case of alphabets with two elements, by Camille Flye Sainte-Marie in 1894, whereas the generalization to larger alphabets is originally due to Tanja van Aardenne-Ehrenfest and himself.".
- De_Bruijn_sequence label "Cykl de Bruijna".
- De_Bruijn_sequence label "De Bruijn sequence".
- De_Bruijn_sequence label "De Bruijn-rij".
- De_Bruijn_sequence label "De-Bruijn-Folge".
- De_Bruijn_sequence label "Последовательность де Брёйна".
- De_Bruijn_sequence sameAs De-Bruijn-Folge.
- De_Bruijn_sequence sameAs De_Bruijn-rij.
- De_Bruijn_sequence sameAs Cykl_de_Bruijna.
- De_Bruijn_sequence sameAs m.05bvr7.
- De_Bruijn_sequence sameAs Q1953457.
- De_Bruijn_sequence sameAs Q1953457.
- De_Bruijn_sequence sameAs De_Bruijn_sequence.
- De_Bruijn_sequence wasDerivedFrom De_Bruijn_sequence?oldid=604146599.
- De_Bruijn_sequence depiction De_Bruijn_sequence.svg.
- De_Bruijn_sequence isPrimaryTopicOf De_Bruijn_sequence.