Matches in DBpedia 2014 for { <http://dbpedia.org/resource/De_Bruijn_torus> ?p ?o. }
Showing items 1 to 15 of
15
with 100 items per page.
- De_Bruijn_torus abstract "In combinatorial mathematics, a De Bruijn torus, named after Nicolaas Govert de Bruijn, is an array of symbols from an alphabet (often just 0 and 1) that contains every m-by-n matrix exactly once. It is a torus because the edges are considered wraparound for the purpose of finding matrices. Its name comes from the De Bruijn sequence, which can be considered a special case where n is 1 (one dimension).One of the main open questions regarding De Bruijn tori is whether a De Bruijn torus for a particular alphabet size can be constructed for a given m and n. It is known that these always exist when n = 1, since then we simply get the De Bruijn sequences, which always exist. It is also known that "square" tori exist whenever m = n and even (for the odd case the resulting tori cannot be square).The smallest possible binary "square" de Bruijn torus, depicted above right, denoted as (4,4;2,2)2 de Bruijn torus (or simply as B2), contains all 2×2 binary matrices.".
- De_Bruijn_torus thumbnail 2-2-4-4-de-Bruijn-torus.svg?width=300.
- De_Bruijn_torus wikiPageExternalLink Minimal_arrays_containing_all_combinations.html.
- De_Bruijn_torus wikiPageID "5980981".
- De_Bruijn_torus wikiPageRevisionID "604146628".
- De_Bruijn_torus hasPhotoCollection De_Bruijn_torus.
- De_Bruijn_torus subject Category:Combinatorics.
- De_Bruijn_torus comment "In combinatorial mathematics, a De Bruijn torus, named after Nicolaas Govert de Bruijn, is an array of symbols from an alphabet (often just 0 and 1) that contains every m-by-n matrix exactly once. It is a torus because the edges are considered wraparound for the purpose of finding matrices.".
- De_Bruijn_torus label "De Bruijn torus".
- De_Bruijn_torus sameAs m.09rvr52.
- De_Bruijn_torus sameAs Q5244290.
- De_Bruijn_torus sameAs Q5244290.
- De_Bruijn_torus wasDerivedFrom De_Bruijn_torus?oldid=604146628.
- De_Bruijn_torus depiction 2-2-4-4-de-Bruijn-torus.svg.
- De_Bruijn_torus isPrimaryTopicOf De_Bruijn_torus.