Matches in DBpedia 2014 for { <http://dbpedia.org/resource/De_Franchis_theorem> ?p ?o. }
Showing items 1 to 30 of
30
with 100 items per page.
- De_Franchis_theorem abstract "In mathematics, the de Franchis theorem is one of a number of closely related statements applying to compact Riemann surfaces, or, more generally, algebraic curves, X and Y, in the case of genus g > 1. The simplest is that the automorphism group of X is finite (see though Hurwitz's automorphisms theorem). More generally, the set of morphisms from X to Y is finite;fixing X, for all but a finite number of such Y, there is no non-constant morphism from X to Y.These results are named for Michele De Franchis (1875–1946). It is sometimes referenced as the De Franchis-Severi theorem. It was used in an important way by Gerd Faltings to prove the Mordell conjecture.".
- De_Franchis_theorem wikiPageID "3094697".
- De_Franchis_theorem wikiPageRevisionID "576559258".
- De_Franchis_theorem hasPhotoCollection De_Franchis_theorem.
- De_Franchis_theorem subject Category:Algebraic_curves.
- De_Franchis_theorem subject Category:Riemann_surfaces.
- De_Franchis_theorem subject Category:Theorems_in_algebraic_geometry.
- De_Franchis_theorem subject Category:Theorems_in_algebraic_topology.
- De_Franchis_theorem type Abstraction100002137.
- De_Franchis_theorem type AlgebraicCurves.
- De_Franchis_theorem type Attribute100024264.
- De_Franchis_theorem type Communication100033020.
- De_Franchis_theorem type Curve113867641.
- De_Franchis_theorem type Line113863771.
- De_Franchis_theorem type Message106598915.
- De_Franchis_theorem type Proposition106750804.
- De_Franchis_theorem type Shape100027807.
- De_Franchis_theorem type Statement106722453.
- De_Franchis_theorem type Theorem106752293.
- De_Franchis_theorem type TheoremsInAlgebraicGeometry.
- De_Franchis_theorem type TheoremsInAlgebraicTopology.
- De_Franchis_theorem type TheoremsInGeometry.
- De_Franchis_theorem comment "In mathematics, the de Franchis theorem is one of a number of closely related statements applying to compact Riemann surfaces, or, more generally, algebraic curves, X and Y, in the case of genus g > 1. The simplest is that the automorphism group of X is finite (see though Hurwitz's automorphisms theorem).".
- De_Franchis_theorem label "De Franchis theorem".
- De_Franchis_theorem sameAs m.08r1jb.
- De_Franchis_theorem sameAs Q5244361.
- De_Franchis_theorem sameAs Q5244361.
- De_Franchis_theorem sameAs De_Franchis_theorem.
- De_Franchis_theorem wasDerivedFrom De_Franchis_theorem?oldid=576559258.
- De_Franchis_theorem isPrimaryTopicOf De_Franchis_theorem.