Matches in DBpedia 2014 for { <http://dbpedia.org/resource/De_Rham–Weil_theorem> ?p ?o. }
Showing items 1 to 13 of
13
with 100 items per page.
- De_Rham–Weil_theorem abstract "In algebraic topology, the De Rham–Weil theorem allows computation of sheaf cohomology using an acyclic resolution of the sheaf in question.Let be a sheaf on a topological space and a resolution of by acyclic sheaves. Then where denotes the -th sheaf cohomology group of with coefficients in The De Rham–Weil theorem follows from the more general fact that derived functors may be computed using acyclic resolutions instead of simply injective resolutions.This article incorporates material from De Rham-Weil theorem on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.".
- De_Rham–Weil_theorem wikiPageID "3017438".
- De_Rham–Weil_theorem wikiPageRevisionID "551284355".
- De_Rham–Weil_theorem id "6333".
- De_Rham–Weil_theorem title "De Rham-Weil theorem".
- De_Rham–Weil_theorem subject Category:Homological_algebra.
- De_Rham–Weil_theorem subject Category:Sheaf_theory.
- De_Rham–Weil_theorem comment "In algebraic topology, the De Rham–Weil theorem allows computation of sheaf cohomology using an acyclic resolution of the sheaf in question.Let be a sheaf on a topological space and a resolution of by acyclic sheaves.".
- De_Rham–Weil_theorem label "De Rham–Weil theorem".
- De_Rham–Weil_theorem sameAs De_Rham%E2%80%93Weil_theorem.
- De_Rham–Weil_theorem sameAs Q5244715.
- De_Rham–Weil_theorem sameAs Q5244715.
- De_Rham–Weil_theorem wasDerivedFrom De_Rham–Weil_theorem?oldid=551284355.