Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Dedekind_psi_function> ?p ?o. }
Showing items 1 to 24 of
24
with 100 items per page.
- Dedekind_psi_function abstract "In number theory, the Dedekind psi function is the multiplicative function on the positive integers defined by where the product is taken over all primes p dividing n (by convention, ψ(1) is the empty product and so has value 1). The function was introduced by Richard Dedekind in connection with modular functions.The value of ψ(n) for the first few integers n is:1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12, 24 ... (sequence A001615 in OEIS).ψ(n) is greater than n for all n greater than 1, and is even for all n greater than 2. If n is a square-free number then ψ(n) = σ(n).The ψ function can also be defined by setting ψ(pn) = (p+1)pn-1 for powers of any prime p, and then extending the definition to all integers by multiplicativity. This also leads to a proof of the generating function in terms of the Riemann zeta function, which isThis is also a consequence of the fact that we can write as a Dirichlet convolution of .".
- Dedekind_psi_function wikiPageID "5234384".
- Dedekind_psi_function wikiPageRevisionID "571167633".
- Dedekind_psi_function hasPhotoCollection Dedekind_psi_function.
- Dedekind_psi_function title "Dedekind Function".
- Dedekind_psi_function urlname "DedekindFunction".
- Dedekind_psi_function subject Category:Multiplicative_functions.
- Dedekind_psi_function type Abstraction100002137.
- Dedekind_psi_function type Function113783816.
- Dedekind_psi_function type MathematicalRelation113783581.
- Dedekind_psi_function type MultiplicativeFunctions.
- Dedekind_psi_function type Relation100031921.
- Dedekind_psi_function comment "In number theory, the Dedekind psi function is the multiplicative function on the positive integers defined by where the product is taken over all primes p dividing n (by convention, ψ(1) is the empty product and so has value 1). The function was introduced by Richard Dedekind in connection with modular functions.The value of ψ(n) for the first few integers n is:1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12, 24 ...".
- Dedekind_psi_function label "Dedekind psi function".
- Dedekind_psi_function label "Dedekindsche Psi-Funktion".
- Dedekind_psi_function label "Función psi de Dedekind".
- Dedekind_psi_function sameAs Dedekindsche_Psi-Funktion.
- Dedekind_psi_function sameAs Función_psi_de_Dedekind.
- Dedekind_psi_function sameAs m.0d97vg.
- Dedekind_psi_function sameAs Q1182153.
- Dedekind_psi_function sameAs Q1182153.
- Dedekind_psi_function sameAs Dedekind_psi_function.
- Dedekind_psi_function wasDerivedFrom Dedekind_psi_function?oldid=571167633.
- Dedekind_psi_function isPrimaryTopicOf Dedekind_psi_function.