Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Dense_submodule> ?p ?o. }
Showing items 1 to 14 of
14
with 100 items per page.
- Dense_submodule abstract "In abstract algebra, specifically in module theory, a dense submodule of a module is a refinement of the notion of an essential submodule. If N is a dense submodule of M, it may also be said it may alternatively be said that "N ⊆ M is a rational extension". Dense submodules are connected with rings of quotients in noncommutative ring theory. Most of the results appearing here were first established in (Johnson 1951), (Utumi 1956) and (Findlay & Lambek 1958).It should be noticed that this terminology is different from the notion of a dense subset in general topology. No topology is needed to define a dense submodule, and a dense submodule may or may not be topologically dense in a module with topology.".
- Dense_submodule wikiPageID "32315625".
- Dense_submodule wikiPageRevisionID "606793967".
- Dense_submodule hasPhotoCollection Dense_submodule.
- Dense_submodule subject Category:Abstract_algebra.
- Dense_submodule subject Category:Module_theory.
- Dense_submodule subject Category:Ring_theory.
- Dense_submodule comment "In abstract algebra, specifically in module theory, a dense submodule of a module is a refinement of the notion of an essential submodule. If N is a dense submodule of M, it may also be said it may alternatively be said that "N ⊆ M is a rational extension". Dense submodules are connected with rings of quotients in noncommutative ring theory.".
- Dense_submodule label "Dense submodule".
- Dense_submodule sameAs m.0gys538.
- Dense_submodule sameAs Q5259310.
- Dense_submodule sameAs Q5259310.
- Dense_submodule wasDerivedFrom Dense_submodule?oldid=606793967.
- Dense_submodule isPrimaryTopicOf Dense_submodule.