Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Diagonalizable_matrix> ?p ?o. }
Showing items 1 to 38 of
38
with 100 items per page.
- Diagonalizable_matrix abstract "In linear algebra, a square matrix A is called diagonalizable if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix P such that P−1AP is a diagonal matrix. If V is a finite-dimensional vector space, then a linear map T : V → V is called diagonalizable if there exists an ordered basis of V with respect to which T is represented by a diagonal matrix. Diagonalization is the process of finding a corresponding diagonal matrix for a diagonalizable matrix or linear map. A square matrix which is not diagonalizable is called defective.Diagonalizable matrices and maps are of interest because diagonal matrices are especially easy to handle: their eigenvalues and eigenvectors are known and one can raise a diagonal matrix to a power by simply raising the diagonal entries to that same power. Geometrically, a diagonalizable matrix is an inhomogeneous dilation (or anisotropic scaling) — it scales the space, as does a homogeneous dilation, but by a different factor in each direction, determined by the scale factors on each axis (diagonal entries).".
- Diagonalizable_matrix wikiPageID "246325".
- Diagonalizable_matrix wikiPageRevisionID "603556226".
- Diagonalizable_matrix hasPhotoCollection Diagonalizable_matrix.
- Diagonalizable_matrix id "1960".
- Diagonalizable_matrix title "Diagonalization".
- Diagonalizable_matrix subject Category:Matrices.
- Diagonalizable_matrix type Abstraction100002137.
- Diagonalizable_matrix type Arrangement107938773.
- Diagonalizable_matrix type Array107939382.
- Diagonalizable_matrix type Group100031264.
- Diagonalizable_matrix type Matrices.
- Diagonalizable_matrix type Matrix108267640.
- Diagonalizable_matrix comment "In linear algebra, a square matrix A is called diagonalizable if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix P such that P−1AP is a diagonal matrix. If V is a finite-dimensional vector space, then a linear map T : V → V is called diagonalizable if there exists an ordered basis of V with respect to which T is represented by a diagonal matrix. Diagonalization is the process of finding a corresponding diagonal matrix for a diagonalizable matrix or linear map.".
- Diagonalizable_matrix label "Diagonaliseerbare matrix".
- Diagonalizable_matrix label "Diagonalizable matrix".
- Diagonalizable_matrix label "Diagonalizacja".
- Diagonalizable_matrix label "Diagonalizzabilità".
- Diagonalizable_matrix label "Matrice diagonalisable".
- Diagonalizable_matrix label "Matriz diagonalizable".
- Diagonalizable_matrix label "Matriz diagonalizável".
- Diagonalizable_matrix label "مصفوفة قطورة".
- Diagonalizable_matrix label "可对角化矩阵".
- Diagonalizable_matrix label "対角化".
- Diagonalizable_matrix sameAs Diagonalizovatelná_matice.
- Diagonalizable_matrix sameAs Matriz_diagonalizable.
- Diagonalizable_matrix sameAs Matrice_diagonalisable.
- Diagonalizable_matrix sameAs Diagonalizzabilità.
- Diagonalizable_matrix sameAs 対角化.
- Diagonalizable_matrix sameAs Diagonaliseerbare_matrix.
- Diagonalizable_matrix sameAs Diagonalizacja.
- Diagonalizable_matrix sameAs Matriz_diagonalizável.
- Diagonalizable_matrix sameAs m.01kn18.
- Diagonalizable_matrix sameAs Q1767080.
- Diagonalizable_matrix sameAs Q1767080.
- Diagonalizable_matrix sameAs Diagonalizable_matrix.
- Diagonalizable_matrix wasDerivedFrom Diagonalizable_matrix?oldid=603556226.
- Diagonalizable_matrix isPrimaryTopicOf Diagonalizable_matrix.