Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Discrete_category> ?p ?o. }
Showing items 1 to 20 of
20
with 100 items per page.
- Discrete_category abstract "In mathematics, especially category theory, a discrete category is a category whose only morphisms are the identity morphisms. It is the simplest kind of category. Specifically a category C is discrete ifhomC(X, X) = {idX} for all objects XhomC(X, Y) = ∅ for all objects X ≠ YSince by axioms, there is always the identity morphism between the same object, the above is equivalent to saying|homC(X, Y)| is 1 when X = Y and 0 when X is not equal to Y.Clearly, any class of objects defines a discrete category when augmented with identity maps.Any subcategory of a discrete category is discrete. Also, a category is discrete if and only if all of its subcategories are full.The limit of any functor from a discrete category into another category is called a product, while the colimit is called a coproduct.".
- Discrete_category wikiPageExternalLink docviewer?did=Gold010&id=3.
- Discrete_category wikiPageExternalLink ~rob.
- Discrete_category wikiPageID "808519".
- Discrete_category wikiPageRevisionID "542594933".
- Discrete_category hasPhotoCollection Discrete_category.
- Discrete_category subject Category:Category_theory.
- Discrete_category comment "In mathematics, especially category theory, a discrete category is a category whose only morphisms are the identity morphisms. It is the simplest kind of category.".
- Discrete_category label "Categoría discreta".
- Discrete_category label "Discrete categorie".
- Discrete_category label "Discrete category".
- Discrete_category label "Diskrete Kategorie".
- Discrete_category sameAs Diskrete_Kategorie.
- Discrete_category sameAs Categoría_discreta.
- Discrete_category sameAs Discrete_categorie.
- Discrete_category sameAs m.03djdr.
- Discrete_category sameAs Q1228851.
- Discrete_category sameAs Q1228851.
- Discrete_category wasDerivedFrom Discrete_category?oldid=542594933.
- Discrete_category isPrimaryTopicOf Discrete_category.