Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Divergence_theorem> ?p ?o. }
Showing items 1 to 50 of
50
with 100 items per page.
- Divergence_theorem abstract "In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, is a result that relates the flow (that is, flux) of a vector field through a surface to the behavior of the vector field inside the surface.More precisely, the divergence theorem states that the outward flux of a vector field through a closed surface is equal to the volume integral of the divergence over the region inside the surface. Intuitively, it states that the sum of all sources minus the sum of all sinks gives the net flow out of a region.The divergence theorem is an important result for the mathematics of engineering, in particular in electrostatics and fluid dynamics.In physics and engineering, the divergence theorem is usually applied in three dimensions. However, it generalizes to any number of dimensions. In one dimension, it is equivalent to the fundamental theorem of calculus. In two dimensions, it is equivalent to Green's theorem.The theorem is a special case of the more general Stokes' theorem.".
- Divergence_theorem thumbnail Divergence_theorem.svg?width=300.
- Divergence_theorem wikiPageExternalLink TheDivergenceGaussTheorem.
- Divergence_theorem wikiPageExternalLink Divergence.html.
- Divergence_theorem wikiPageExternalLink kmath330.htm.
- Divergence_theorem wikiPageID "151864".
- Divergence_theorem wikiPageRevisionID "606022939".
- Divergence_theorem hasPhotoCollection Divergence_theorem.
- Divergence_theorem id "p/o070600".
- Divergence_theorem title "Divergence Theorem".
- Divergence_theorem title "Ostrogradski formula".
- Divergence_theorem urlname "DivergenceTheorem".
- Divergence_theorem subject Category:Theorems_in_calculus.
- Divergence_theorem type Abstraction100002137.
- Divergence_theorem type Communication100033020.
- Divergence_theorem type Message106598915.
- Divergence_theorem type Proposition106750804.
- Divergence_theorem type Statement106722453.
- Divergence_theorem type Theorem106752293.
- Divergence_theorem type TheoremsInCalculus.
- Divergence_theorem comment "In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, is a result that relates the flow (that is, flux) of a vector field through a surface to the behavior of the vector field inside the surface.More precisely, the divergence theorem states that the outward flux of a vector field through a closed surface is equal to the volume integral of the divergence over the region inside the surface.".
- Divergence_theorem label "Divergence theorem".
- Divergence_theorem label "Divergentiestelling".
- Divergence_theorem label "Gaußscher Integralsatz".
- Divergence_theorem label "Teorema da divergência".
- Divergence_theorem label "Teorema de la divergencia".
- Divergence_theorem label "Teorema della divergenza".
- Divergence_theorem label "Théorème de flux-divergence".
- Divergence_theorem label "Twierdzenie Ostrogradskiego-Gaussa".
- Divergence_theorem label "Формула Гаусса — Остроградского".
- Divergence_theorem label "発散定理".
- Divergence_theorem label "高斯散度定理".
- Divergence_theorem sameAs Gaussova_věta.
- Divergence_theorem sameAs Gaußscher_Integralsatz.
- Divergence_theorem sameAs Teorema_de_la_divergencia.
- Divergence_theorem sameAs Théorème_de_flux-divergence.
- Divergence_theorem sameAs Teorema_Divergensi.
- Divergence_theorem sameAs Teorema_della_divergenza.
- Divergence_theorem sameAs 発散定理.
- Divergence_theorem sameAs 발산정리.
- Divergence_theorem sameAs Divergentiestelling.
- Divergence_theorem sameAs Twierdzenie_Ostrogradskiego-Gaussa.
- Divergence_theorem sameAs Teorema_da_divergência.
- Divergence_theorem sameAs m.013s25.
- Divergence_theorem sameAs Q338886.
- Divergence_theorem sameAs Q338886.
- Divergence_theorem sameAs Divergence_theorem.
- Divergence_theorem wasDerivedFrom Divergence_theorem?oldid=606022939.
- Divergence_theorem depiction Divergence_theorem.svg.
- Divergence_theorem isPrimaryTopicOf Divergence_theorem.