Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Divide_and_conquer_algorithms> ?p ?o. }
Showing items 1 to 34 of
34
with 100 items per page.
- Divide_and_conquer_algorithms abstract "In computer science, divide and conquer (D&C) is an important algorithm design paradigm based on multi-branched recursion. A divide and conquer algorithm works by recursively breaking down a problem into two or more sub-problems of the same (or related) type, until these become simple enough to be solved directly. The solutions to the sub-problems are then combined to give a solution to the original problem.This technique is the basis of efficient algorithms for all kinds of problems, such as sorting (e.g., quicksort, merge sort), multiplying large numbers (e.g. Karatsuba), syntactic analysis (e.g., top-down parsers), and computing the discrete Fourier transform (FFTs).On the other hand, the ability to understand and design D&C algorithms is a skill that takes time to master. As when proving a theorem by induction, it is often necessary to replace the original problem by a more general or complicated problem in order to initialize the recursion, and there is no systematic method for finding the proper generalization. These D&C complications are seen when optimizing the calculation of a Fibonacci number with efficient double recursion.The correctness of a divide and conquer algorithm is usually proved by mathematical induction, and its computational cost is often determined by solving recurrence relations.".
- Divide_and_conquer_algorithms wikiPageID "201154".
- Divide_and_conquer_algorithms wikiPageRevisionID "603151188".
- Divide_and_conquer_algorithms subject Category:Algorithms.
- Divide_and_conquer_algorithms subject Category:Operations_research.
- Divide_and_conquer_algorithms subject Category:Optimization_algorithms_and_methods.
- Divide_and_conquer_algorithms comment "In computer science, divide and conquer (D&C) is an important algorithm design paradigm based on multi-branched recursion. A divide and conquer algorithm works by recursively breaking down a problem into two or more sub-problems of the same (or related) type, until these become simple enough to be solved directly.".
- Divide_and_conquer_algorithms label "Algoritmo divide y vencerás".
- Divide_and_conquer_algorithms label "Divide and conquer algorithms".
- Divide_and_conquer_algorithms label "Divide et impera (informatica)".
- Divide_and_conquer_algorithms label "Diviser pour régner (informatique)".
- Divide_and_conquer_algorithms label "Divisão e conquista".
- Divide_and_conquer_algorithms label "Dziel i zwyciężaj".
- Divide_and_conquer_algorithms label "Teile und herrsche (Informatik)".
- Divide_and_conquer_algorithms label "Разделяй и властвуй (информатика)".
- Divide_and_conquer_algorithms label "خوارزمية فرق تسد".
- Divide_and_conquer_algorithms label "分割統治法".
- Divide_and_conquer_algorithms label "分治法".
- Divide_and_conquer_algorithms sameAs Rozděl_a_panuj_(algoritmus).
- Divide_and_conquer_algorithms sameAs Teile_und_herrsche_(Informatik).
- Divide_and_conquer_algorithms sameAs Διαίρει_και_βασίλευε_(υπολογιστές).
- Divide_and_conquer_algorithms sameAs Algoritmo_divide_y_vencerás.
- Divide_and_conquer_algorithms sameAs Diviser_pour_régner_(informatique).
- Divide_and_conquer_algorithms sameAs Divide_and_Conquer.
- Divide_and_conquer_algorithms sameAs Divide_et_impera_(informatica).
- Divide_and_conquer_algorithms sameAs 分割統治法.
- Divide_and_conquer_algorithms sameAs 분할_정복_알고리즘.
- Divide_and_conquer_algorithms sameAs Dziel_i_zwyciężaj.
- Divide_and_conquer_algorithms sameAs Divisão_e_conquista.
- Divide_and_conquer_algorithms sameAs m.01cktl.
- Divide_and_conquer_algorithms sameAs Q671298.
- Divide_and_conquer_algorithms sameAs Q671298.
- Divide_and_conquer_algorithms wasDerivedFrom Divide_and_conquer_algorithms?oldid=603151188.
- Divide_and_conquer_algorithms isPrimaryTopicOf Divide_and_conquer_algorithms.