Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Ehrhart_polynomial> ?p ?o. }
Showing items 1 to 35 of
35
with 100 items per page.
- Ehrhart_polynomial abstract "In mathematics, an integral polytope has an associated Ehrhart polynomial that encodes the relationship between the volume of a polytope and the number of integer points the polytope contains. The theory of Ehrhart polynomials can be seen as a higher-dimensional generalization of Pick's theorem in the Euclidean plane.These polynomials are named after Eugène Ehrhart who studied them in the 1960s.".
- Ehrhart_polynomial thumbnail Second_dilate_of_a_unit_square.png?width=300.
- Ehrhart_polynomial wikiPageExternalLink books?id=SxY1Xrr12DwC&pg=PA475&lpg=PA475.
- Ehrhart_polynomial wikiPageExternalLink home.html.
- Ehrhart_polynomial wikiPageExternalLink toric_var.html.
- Ehrhart_polynomial wikiPageID "316904".
- Ehrhart_polynomial wikiPageRevisionID "593776930".
- Ehrhart_polynomial hasPhotoCollection Ehrhart_polynomial.
- Ehrhart_polynomial subject Category:Figurate_numbers.
- Ehrhart_polynomial subject Category:Lattice_points.
- Ehrhart_polynomial subject Category:Polynomials.
- Ehrhart_polynomial subject Category:Polytopes.
- Ehrhart_polynomial type Abstraction100002137.
- Ehrhart_polynomial type Amount105107765.
- Ehrhart_polynomial type Attribute100024264.
- Ehrhart_polynomial type FigurateNumbers.
- Ehrhart_polynomial type Function113783816.
- Ehrhart_polynomial type Magnitude105090441.
- Ehrhart_polynomial type MathematicalRelation113783581.
- Ehrhart_polynomial type Number105121418.
- Ehrhart_polynomial type Polynomial105861855.
- Ehrhart_polynomial type Polynomials.
- Ehrhart_polynomial type Property104916342.
- Ehrhart_polynomial type Relation100031921.
- Ehrhart_polynomial comment "In mathematics, an integral polytope has an associated Ehrhart polynomial that encodes the relationship between the volume of a polytope and the number of integer points the polytope contains. The theory of Ehrhart polynomials can be seen as a higher-dimensional generalization of Pick's theorem in the Euclidean plane.These polynomials are named after Eugène Ehrhart who studied them in the 1960s.".
- Ehrhart_polynomial label "Ehrhart polynomial".
- Ehrhart_polynomial label "エルハート多項式".
- Ehrhart_polynomial sameAs エルハート多項式.
- Ehrhart_polynomial sameAs m.01tz52.
- Ehrhart_polynomial sameAs Q5348622.
- Ehrhart_polynomial sameAs Q5348622.
- Ehrhart_polynomial sameAs Ehrhart_polynomial.
- Ehrhart_polynomial wasDerivedFrom Ehrhart_polynomial?oldid=593776930.
- Ehrhart_polynomial depiction Second_dilate_of_a_unit_square.png.
- Ehrhart_polynomial isPrimaryTopicOf Ehrhart_polynomial.