Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Einstein_notation> ?p ?o. }
Showing items 1 to 54 of
54
with 100 items per page.
- Einstein_notation abstract "In mathematics, especially in applications of linear algebra to physics, the Einstein notation or Einstein summation convention is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving notational brevity. As part of mathematics it is a notational subset of Ricci calculus; however, it is often used in applications in physics that do not distinguish between tangent and cotangent spaces. It was introduced to physics by Albert Einstein in 1916.".
- Einstein_notation wikiPageExternalLink lecture10final.pdfc.
- Einstein_notation wikiPageID "195407".
- Einstein_notation wikiPageRevisionID "594224821".
- Einstein_notation first "L.P.".
- Einstein_notation hasPhotoCollection Einstein_notation.
- Einstein_notation id "E/e035220".
- Einstein_notation last "Kuptsov".
- Einstein_notation title "Einstein rule".
- Einstein_notation subject Category:Albert_Einstein.
- Einstein_notation subject Category:Mathematical_notation.
- Einstein_notation subject Category:Mathematical_physics.
- Einstein_notation subject Category:Multilinear_algebra.
- Einstein_notation subject Category:Riemannian_geometry.
- Einstein_notation subject Category:Tensors.
- Einstein_notation type Abstraction100002137.
- Einstein_notation type Cognition100023271.
- Einstein_notation type Concept105835747.
- Einstein_notation type Content105809192.
- Einstein_notation type Idea105833840.
- Einstein_notation type PsychologicalFeature100023100.
- Einstein_notation type Quantity105855125.
- Einstein_notation type Tensor105864481.
- Einstein_notation type Tensors.
- Einstein_notation type Variable105857459.
- Einstein_notation comment "In mathematics, especially in applications of linear algebra to physics, the Einstein notation or Einstein summation convention is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving notational brevity. As part of mathematics it is a notational subset of Ricci calculus; however, it is often used in applications in physics that do not distinguish between tangent and cotangent spaces. It was introduced to physics by Albert Einstein in 1916.".
- Einstein_notation label "Convenio de suma de Einstein".
- Einstein_notation label "Convention de sommation d'Einstein".
- Einstein_notation label "Einstein notation".
- Einstein_notation label "Einstein-sommatieconventie".
- Einstein_notation label "Einsteinsche Summenkonvention".
- Einstein_notation label "Konwencja sumacyjna Einsteina".
- Einstein_notation label "Notazione di Einstein".
- Einstein_notation label "Notação de Einstein".
- Einstein_notation label "Соглашение Эйнштейна".
- Einstein_notation label "アインシュタインの縮約記法".
- Einstein_notation label "爱因斯坦求和约定".
- Einstein_notation sameAs Einsteinova_konvence.
- Einstein_notation sameAs Einsteinsche_Summenkonvention.
- Einstein_notation sameAs Convenio_de_suma_de_Einstein.
- Einstein_notation sameAs Convention_de_sommation_d'Einstein.
- Einstein_notation sameAs Notasi_Einstein.
- Einstein_notation sameAs Notazione_di_Einstein.
- Einstein_notation sameAs アインシュタインの縮約記法.
- Einstein_notation sameAs 아인슈타인_표기법.
- Einstein_notation sameAs Einstein-sommatieconventie.
- Einstein_notation sameAs Konwencja_sumacyjna_Einsteina.
- Einstein_notation sameAs Notação_de_Einstein.
- Einstein_notation sameAs m.01brrn.
- Einstein_notation sameAs Q673253.
- Einstein_notation sameAs Q673253.
- Einstein_notation sameAs Einstein_notation.
- Einstein_notation wasDerivedFrom Einstein_notation?oldid=594224821.
- Einstein_notation isPrimaryTopicOf Einstein_notation.