Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Elliptic_operator> ?p ?o. }
Showing items 1 to 48 of
48
with 100 items per page.
- Elliptic_operator abstract "In mathematicsIn the theory of partial differential equations, elliptic operators are differential operators that generalize the Laplace operator. They are defined by the condition that the coefficients of the highest-order derivatives be positive, which implies the key property that the principal symbol is invertible, or equivalently that there are no real characteristic directions.Elliptic operators are typical of potential theory, and they appear frequently in electrostatics and continuum mechanics. Elliptic regularity implies that their solutions tend to be smooth functions (if the coefficients in the operator are smooth). Steady-state solutions to hyperbolic and parabolic equations generally solve elliptic equations.".
- Elliptic_operator thumbnail Laplace's_equation_on_an_annulus.jpg?width=300.
- Elliptic_operator wikiPageExternalLink lpdetoc3.pdf.
- Elliptic_operator wikiPageExternalLink npde-toc3.pdf.
- Elliptic_operator wikiPageExternalLink S0273-0979-00-00868-5.pdf.
- Elliptic_operator wikiPageExternalLink 978-3-540-41160-4.
- Elliptic_operator wikiPageID "550137".
- Elliptic_operator wikiPageRevisionID "606206194".
- Elliptic_operator first "M. A.".
- Elliptic_operator hasPhotoCollection Elliptic_operator.
- Elliptic_operator id "Elliptic_operator".
- Elliptic_operator last "Shubin".
- Elliptic_operator title "Elliptic operator".
- Elliptic_operator subject Category:Differential_operators.
- Elliptic_operator subject Category:Elliptic_partial_differential_equations.
- Elliptic_operator type Abstraction100002137.
- Elliptic_operator type Communication100033020.
- Elliptic_operator type DifferentialEquation106670521.
- Elliptic_operator type DifferentialOperators.
- Elliptic_operator type EllipticPartialDifferentialEquations.
- Elliptic_operator type Equation106669864.
- Elliptic_operator type Function113783816.
- Elliptic_operator type MathematicalRelation113783581.
- Elliptic_operator type MathematicalStatement106732169.
- Elliptic_operator type Message106598915.
- Elliptic_operator type Operator113786413.
- Elliptic_operator type PartialDifferentialEquation106670866.
- Elliptic_operator type Relation100031921.
- Elliptic_operator type Statement106722453.
- Elliptic_operator comment "In mathematicsIn the theory of partial differential equations, elliptic operators are differential operators that generalize the Laplace operator.".
- Elliptic_operator label "Ecuación elíptica en derivadas parciales".
- Elliptic_operator label "Elliptic operator".
- Elliptic_operator label "Elliptische partielle Differentialgleichung".
- Elliptic_operator label "Equazione differenziale alle derivate parziali ellittica".
- Elliptic_operator label "Equação elíptica em derivadas parciais".
- Elliptic_operator label "Эллиптический оператор".
- Elliptic_operator label "椭圆算子".
- Elliptic_operator sameAs Elliptische_partielle_Differentialgleichung.
- Elliptic_operator sameAs Ecuación_elíptica_en_derivadas_parciales.
- Elliptic_operator sameAs Equazione_differenziale_alle_derivate_parziali_ellittica.
- Elliptic_operator sameAs Equação_elíptica_em_derivadas_parciais.
- Elliptic_operator sameAs m.02p1n3.
- Elliptic_operator sameAs Q427625.
- Elliptic_operator sameAs Q427625.
- Elliptic_operator sameAs Elliptic_operator.
- Elliptic_operator wasDerivedFrom Elliptic_operator?oldid=606206194.
- Elliptic_operator depiction Laplace's_equation_on_an_annulus.jpg.
- Elliptic_operator isPrimaryTopicOf Elliptic_operator.