Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Endoscopic_group> ?p ?o. }
Showing items 1 to 33 of
33
with 100 items per page.
- Endoscopic_group abstract "In mathematics, endoscopic groups of reductive algebraic groups were introduced by Robert Langlands (1979, 1983) in his work on the stable trace formula.Roughly speaking, an endoscopic group H of G is a quasi-split group whose L-group is the connected component of the centralizer of a semisimple element of the L-group of G.In the stable trace formula, unstable orbital integrals on a group G correspond to stable orbital integrals on its endoscopic groups H. The relation between them is given by the fundamental lemma.".
- Endoscopic_group wikiPageExternalLink books?id=NYxAtwAACAAJ.
- Endoscopic_group wikiPageExternalLink hida22.pdf.
- Endoscopic_group wikiPageExternalLink supplement.html.
- Endoscopic_group wikiPageExternalLink Book.pdf.
- Endoscopic_group wikiPageExternalLink src2006.
- Endoscopic_group wikiPageExternalLink labesse.pdf.
- Endoscopic_group wikiPageExternalLink debuts.
- Endoscopic_group wikiPageID "20546343".
- Endoscopic_group wikiPageRevisionID "566030797".
- Endoscopic_group authorlink "Robert Langlands".
- Endoscopic_group first "Robert".
- Endoscopic_group hasPhotoCollection Endoscopic_group.
- Endoscopic_group last "Langlands".
- Endoscopic_group year "1979".
- Endoscopic_group year "1983".
- Endoscopic_group subject Category:Automorphic_forms.
- Endoscopic_group subject Category:Langlands_program.
- Endoscopic_group type Abstraction100002137.
- Endoscopic_group type AutomorphicForms.
- Endoscopic_group type Form106290637.
- Endoscopic_group type LanguageUnit106284225.
- Endoscopic_group type Part113809207.
- Endoscopic_group type Relation100031921.
- Endoscopic_group type Word106286395.
- Endoscopic_group comment "In mathematics, endoscopic groups of reductive algebraic groups were introduced by Robert Langlands (1979, 1983) in his work on the stable trace formula.Roughly speaking, an endoscopic group H of G is a quasi-split group whose L-group is the connected component of the centralizer of a semisimple element of the L-group of G.In the stable trace formula, unstable orbital integrals on a group G correspond to stable orbital integrals on its endoscopic groups H.".
- Endoscopic_group label "Endoscopic group".
- Endoscopic_group sameAs m.0522fms.
- Endoscopic_group sameAs Q5376414.
- Endoscopic_group sameAs Q5376414.
- Endoscopic_group sameAs Endoscopic_group.
- Endoscopic_group wasDerivedFrom Endoscopic_group?oldid=566030797.
- Endoscopic_group isPrimaryTopicOf Endoscopic_group.