Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Equioscillation_theorem> ?p ?o. }
Showing items 1 to 29 of
29
with 100 items per page.
- Equioscillation_theorem abstract "The equioscillation theorem concerns the approximation of continuous functions using polynomials when the merit function is the maximum difference (uniform norm). Its discovery is attributed to Chebyshev.".
- Equioscillation_theorem wikiPageExternalLink Contents.html.
- Equioscillation_theorem wikiPageExternalLink cheb-equiosc-thm_2007.pdf.
- Equioscillation_theorem wikiPageID "32446743".
- Equioscillation_theorem wikiPageRevisionID "604782181".
- Equioscillation_theorem hasPhotoCollection Equioscillation_theorem.
- Equioscillation_theorem subject Category:Numerical_analysis.
- Equioscillation_theorem subject Category:Polynomials.
- Equioscillation_theorem subject Category:Theorems_in_analysis.
- Equioscillation_theorem type Abstraction100002137.
- Equioscillation_theorem type Communication100033020.
- Equioscillation_theorem type Function113783816.
- Equioscillation_theorem type MathematicalRelation113783581.
- Equioscillation_theorem type Message106598915.
- Equioscillation_theorem type Polynomial105861855.
- Equioscillation_theorem type Polynomials.
- Equioscillation_theorem type Proposition106750804.
- Equioscillation_theorem type Relation100031921.
- Equioscillation_theorem type Statement106722453.
- Equioscillation_theorem type Theorem106752293.
- Equioscillation_theorem type TheoremsInAnalysis.
- Equioscillation_theorem comment "The equioscillation theorem concerns the approximation of continuous functions using polynomials when the merit function is the maximum difference (uniform norm). Its discovery is attributed to Chebyshev.".
- Equioscillation_theorem label "Equioscillation theorem".
- Equioscillation_theorem sameAs m.0gytwnk.
- Equioscillation_theorem sameAs Q5384549.
- Equioscillation_theorem sameAs Q5384549.
- Equioscillation_theorem sameAs Equioscillation_theorem.
- Equioscillation_theorem wasDerivedFrom Equioscillation_theorem?oldid=604782181.
- Equioscillation_theorem isPrimaryTopicOf Equioscillation_theorem.