Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Exponential_tree> ?p ?o. }
Showing items 1 to 40 of
40
with 100 items per page.
- Exponential_tree abstract "An exponential tree is almost identical to a binary search tree, with the exception that the dimension of the tree is not the same at all levels. In a normal binary search tree, each node has a dimension (d) of 1, and has 2d children. In an exponential tree, the dimension equals the depth of the node, with the root node having a d = 1. So the second level can hold two nodes, the third can hold eight nodes, the fourth 64 nodes, and so on.".
- Exponential_tree wikiPageExternalLink summary?doi=10.1.1.55.7109.
- Exponential_tree wikiPageExternalLink pxc3873876.pdf.
- Exponential_tree wikiPageExternalLink for-web.pdf.
- Exponential_tree wikiPageID "572903".
- Exponential_tree wikiPageRevisionID "585941567".
- Exponential_tree deleteAvg "O".
- Exponential_tree deleteWorst "O".
- Exponential_tree hasPhotoCollection Exponential_tree.
- Exponential_tree insertAvg "O".
- Exponential_tree insertWorst "O".
- Exponential_tree inventedBy Arne_Andersson_(computer_scientist).
- Exponential_tree inventedYear "1995".
- Exponential_tree name "Exponential tree".
- Exponential_tree searchAvg "O".
- Exponential_tree searchWorst "O".
- Exponential_tree spaceAvg "O".
- Exponential_tree spaceWorst "O".
- Exponential_tree type "tree".
- Exponential_tree subject Category:Exponentials.
- Exponential_tree subject Category:Trees_(data_structures).
- Exponential_tree type Abstraction100002137.
- Exponential_tree type Arrangement105726596.
- Exponential_tree type Cognition100023271.
- Exponential_tree type DataStructure105728493.
- Exponential_tree type Exponential113789462.
- Exponential_tree type Exponentials.
- Exponential_tree type Function113783816.
- Exponential_tree type MathematicalRelation113783581.
- Exponential_tree type PsychologicalFeature100023100.
- Exponential_tree type Relation100031921.
- Exponential_tree type Structure105726345.
- Exponential_tree comment "An exponential tree is almost identical to a binary search tree, with the exception that the dimension of the tree is not the same at all levels. In a normal binary search tree, each node has a dimension (d) of 1, and has 2d children. In an exponential tree, the dimension equals the depth of the node, with the root node having a d = 1. So the second level can hold two nodes, the third can hold eight nodes, the fourth 64 nodes, and so on.".
- Exponential_tree label "Exponential tree".
- Exponential_tree sameAs m.02rdhw.
- Exponential_tree sameAs Q5421528.
- Exponential_tree sameAs Q5421528.
- Exponential_tree sameAs Exponential_tree.
- Exponential_tree wasDerivedFrom Exponential_tree?oldid=585941567.
- Exponential_tree isPrimaryTopicOf Exponential_tree.