Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Generalized_Korteweg–de_Vries_equation> ?p ?o. }
Showing items 1 to 17 of
17
with 100 items per page.
- Generalized_Korteweg–de_Vries_equation abstract "In mathematics the generalized Korteweg–de Vries equation (Masayoshi Tsutsumi, Toshio Mukasa & Riichi Iino 1970) is the nonlinear partial differential equationThe function fis sometimes taken to be f(u) = uk+1/(k+1) + u for some positive integer k (where the extra u is a "drift term" that makes the analysis a little easier). The case f(u) = 3u2 is the originalKorteweg–de Vries equation.".
- Generalized_Korteweg–de_Vries_equation wikiPageID "16759552".
- Generalized_Korteweg–de_Vries_equation wikiPageRevisionID "569563426".
- Generalized_Korteweg–de_Vries_equation first "Masayoshi".
- Generalized_Korteweg–de_Vries_equation first "Riichi".
- Generalized_Korteweg–de_Vries_equation first "Toshio".
- Generalized_Korteweg–de_Vries_equation last "Iino".
- Generalized_Korteweg–de_Vries_equation last "Mukasa".
- Generalized_Korteweg–de_Vries_equation last "Tsutsumi".
- Generalized_Korteweg–de_Vries_equation year "1970".
- Generalized_Korteweg–de_Vries_equation subject Category:Partial_differential_equations.
- Generalized_Korteweg–de_Vries_equation comment "In mathematics the generalized Korteweg–de Vries equation (Masayoshi Tsutsumi, Toshio Mukasa & Riichi Iino 1970) is the nonlinear partial differential equationThe function fis sometimes taken to be f(u) = uk+1/(k+1) + u for some positive integer k (where the extra u is a "drift term" that makes the analysis a little easier). The case f(u) = 3u2 is the originalKorteweg–de Vries equation.".
- Generalized_Korteweg–de_Vries_equation label "Generalized Korteweg–de Vries equation".
- Generalized_Korteweg–de_Vries_equation sameAs Generalized_Korteweg%E2%80%93de_Vries_equation.
- Generalized_Korteweg–de_Vries_equation sameAs Q5532441.
- Generalized_Korteweg–de_Vries_equation sameAs Q5532441.
- Generalized_Korteweg–de_Vries_equation wasDerivedFrom Generalized_Korteweg–de_Vries_equation?oldid=569563426.