Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Generative_topographic_map> ?p ?o. }
Showing items 1 to 24 of
24
with 100 items per page.
- Generative_topographic_map abstract "Generative topographic map (GTM) is a machine learning method that is a probabilistic counterpart of the self-organizing map (SOM), is provably convergent and does not require a shrinking neighborhood or a decreasing step size. It is a generative model: the data is assumed to arise by first probabilistically picking a point in a low-dimensional space, mapping the point to the observed high-dimensional input space (via a smooth function), then adding noise in that space. The parameters of the low-dimensional probability distribution, the smooth map and the noise are all learned from the training data using the expectation-maximization (EM) algorithm. GTM was introduced in 1996 in a paper by Christopher M. Bishop, Markus Svensen, and Christopher K. I. Williams.".
- Generative_topographic_map wikiPageExternalLink Bishop-GTM-Ncomp-98.pdf.
- Generative_topographic_map wikiPageExternalLink GTM.
- Generative_topographic_map wikiPageID "1091054".
- Generative_topographic_map wikiPageRevisionID "604225477".
- Generative_topographic_map hasPhotoCollection Generative_topographic_map.
- Generative_topographic_map subject Category:Neural_networks.
- Generative_topographic_map type Abstraction100002137.
- Generative_topographic_map type Communication100033020.
- Generative_topographic_map type ComputerArchitecture106725249.
- Generative_topographic_map type Description106724763.
- Generative_topographic_map type Message106598915.
- Generative_topographic_map type NeuralNetwork106725467.
- Generative_topographic_map type NeuralNetworks.
- Generative_topographic_map type Specification106725067.
- Generative_topographic_map type Statement106722453.
- Generative_topographic_map comment "Generative topographic map (GTM) is a machine learning method that is a probabilistic counterpart of the self-organizing map (SOM), is provably convergent and does not require a shrinking neighborhood or a decreasing step size. It is a generative model: the data is assumed to arise by first probabilistically picking a point in a low-dimensional space, mapping the point to the observed high-dimensional input space (via a smooth function), then adding noise in that space.".
- Generative_topographic_map label "Generative topographic map".
- Generative_topographic_map sameAs m.0455yl.
- Generative_topographic_map sameAs Q5532636.
- Generative_topographic_map sameAs Q5532636.
- Generative_topographic_map sameAs Generative_topographic_map.
- Generative_topographic_map wasDerivedFrom Generative_topographic_map?oldid=604225477.
- Generative_topographic_map isPrimaryTopicOf Generative_topographic_map.