Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Givens_rotation> ?p ?o. }
Showing items 1 to 32 of
32
with 100 items per page.
- Givens_rotation abstract "In numerical linear algebra, a Givens rotation is a rotation in the plane spanned by two coordinates axes. Givens rotations are named after Wallace Givens, who introduced them to numerical analysts in the 1950s while he was working at Argonne National Laboratory.".
- Givens_rotation wikiPageExternalLink pg=578.
- Givens_rotation wikiPageExternalLink QC-Unitary.pdf.
- Givens_rotation wikiPageExternalLink downloads.
- Givens_rotation wikiPageID "680237".
- Givens_rotation wikiPageRevisionID "600731316".
- Givens_rotation hasPhotoCollection Givens_rotation.
- Givens_rotation subject Category:Matrices.
- Givens_rotation subject Category:Numerical_linear_algebra.
- Givens_rotation subject Category:Rotation_in_three_dimensions.
- Givens_rotation type Abstraction100002137.
- Givens_rotation type Arrangement107938773.
- Givens_rotation type Array107939382.
- Givens_rotation type Group100031264.
- Givens_rotation type Matrices.
- Givens_rotation type Matrix108267640.
- Givens_rotation comment "In numerical linear algebra, a Givens rotation is a rotation in the plane spanned by two coordinates axes. Givens rotations are named after Wallace Givens, who introduced them to numerical analysts in the 1950s while he was working at Argonne National Laboratory.".
- Givens_rotation label "Givens rotation".
- Givens_rotation label "Givens-Rotation".
- Givens_rotation label "Givens-rotatie".
- Givens_rotation label "Поворот Гивенса".
- Givens_rotation label "ギブンス回転".
- Givens_rotation label "吉文斯旋转".
- Givens_rotation sameAs Givens-Rotation.
- Givens_rotation sameAs ギブンス回転.
- Givens_rotation sameAs Givens-rotatie.
- Givens_rotation sameAs m.032c5d.
- Givens_rotation sameAs Q1367799.
- Givens_rotation sameAs Q1367799.
- Givens_rotation sameAs Givens_rotation.
- Givens_rotation wasDerivedFrom Givens_rotation?oldid=600731316.
- Givens_rotation isPrimaryTopicOf Givens_rotation.