Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Gradient> ?p ?o. }
Showing items 1 to 46 of
46
with 100 items per page.
- Gradient abstract "In mathematics, the gradient is a generalization of the usual concept of derivative to the functions of several variables. If f(x1, ..., xn) is a differentiable, scalar-valued function of several variables, also called "scalar field", its gradient is the vector of the n partial derivatives of f. It is thus a vector-valued function also called vector field.Similarly to the usual derivative, the gradient represents the slope of the tangent of the graph of the function. More precisely, the gradient points in the direction of the greatest rate of increase of the function and its magnitude is the slope of the graph in that direction. The components of the gradient are the non-constant coefficients of the equation of the tangent space to the graph.Let f be differentiable function defined on a Euclidean space. It becomes a differentiable function of several variables as soon as one chooses an orthonormal frame. The gradient does not depend on the choice of this orthonormal frame. It follows that one may speak of the gradient of f without choosing explicitly a frame.The Jacobian is the generalization of the gradient for vector-valued functions of several variables and differentiable maps between Euclidean spaces or, more generally, manifolds. A further generalization for a function between Banach spaces is the Fréchet derivative.".
- Gradient thumbnail Gradient2.svg?width=300.
- Gradient wikiPageExternalLink gradient-1?playlist=Calculus.
- Gradient wikiPageID "12461".
- Gradient wikiPageRevisionID "604703580".
- Gradient first "L.P.".
- Gradient hasPhotoCollection Gradient.
- Gradient id "G/g044680".
- Gradient last "Kuptsov".
- Gradient title "Gradient".
- Gradient urlname "Gradient".
- Gradient subject Category:Differential_calculus.
- Gradient subject Category:Generalizations_of_the_derivative.
- Gradient subject Category:Linear_operators_in_calculus.
- Gradient subject Category:Vector_calculus.
- Gradient comment "In mathematics, the gradient is a generalization of the usual concept of derivative to the functions of several variables. If f(x1, ..., xn) is a differentiable, scalar-valued function of several variables, also called "scalar field", its gradient is the vector of the n partial derivatives of f. It is thus a vector-valued function also called vector field.Similarly to the usual derivative, the gradient represents the slope of the tangent of the graph of the function.".
- Gradient label "Gradient (Mathematik)".
- Gradient label "Gradient (matematyka)".
- Gradient label "Gradient".
- Gradient label "Gradient".
- Gradient label "Gradiente".
- Gradient label "Gradiente".
- Gradient label "Gradiente".
- Gradient label "Gradiënt (wiskunde)".
- Gradient label "Градиент".
- Gradient label "تدرج".
- Gradient label "勾配 (ベクトル解析)".
- Gradient label "梯度".
- Gradient sameAs Gradient_(matematika).
- Gradient sameAs Gradient_(Mathematik).
- Gradient sameAs Gradiente.
- Gradient sameAs Gradiente.
- Gradient sameAs Gradient.
- Gradient sameAs Gradien.
- Gradient sameAs Gradiente.
- Gradient sameAs 勾配_(ベクトル解析).
- Gradient sameAs 기울기_(벡터).
- Gradient sameAs Gradiënt_(wiskunde).
- Gradient sameAs Gradient_(matematyka).
- Gradient sameAs Gradiente.
- Gradient sameAs m.038hz.
- Gradient sameAs Q173582.
- Gradient sameAs Q173582.
- Gradient wasDerivedFrom Gradient?oldid=604703580.
- Gradient depiction Gradient2.svg.
- Gradient isPrimaryTopicOf Gradient.