Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Greibach_normal_form> ?p ?o. }
Showing items 1 to 33 of
33
with 100 items per page.
- Greibach_normal_form abstract "In computer science and formal language theory, a context-free grammar is in Greibach normal form (GNF) if the right-hand sides of all production rules start with a terminal symbol, optionally followed by some variables. A non-strict form allows one exception to this format restriction for allowing the empty word (epsilon, ε) to be a member of the described language. The normal form was established by Sheila Greibach and it bears her name.More precisely, a context-free grammar is in Greibach normal form, if all production rules are of the form:orwhere is a nonterminal symbol, is a terminal symbol, is a (possibly empty) sequence of nonterminal symbols not including the start symbol, S is the start symbol, and ε is the empty word.Observe that the grammar does not have left recursions.Every context-free grammar can be transformed into an equivalent grammar in Greibach normal form. Various constructions exist. Some do not permit the second form of rule and cannot transform context-free grammars that can generate the empty word. For one such construction the size of the constructed grammar is O(n4) in the general case and O(n3) if no derivation of the original grammar consists of a single nonterminal symbol, where n is the size of the original grammar. This conversion can be used to prove that every context-free language can be accepted by a non-deterministic pushdown automaton. Given a grammar in GNF and a derivable string in the grammar with length n, any top-down parser will halt at depth n.".
- Greibach_normal_form wikiPageID "53928".
- Greibach_normal_form wikiPageRevisionID "601562837".
- Greibach_normal_form hasPhotoCollection Greibach_normal_form.
- Greibach_normal_form subject Category:Formal_languages.
- Greibach_normal_form type Abstraction100002137.
- Greibach_normal_form type Communication100033020.
- Greibach_normal_form type FormalLanguages.
- Greibach_normal_form type Language106282651.
- Greibach_normal_form comment "In computer science and formal language theory, a context-free grammar is in Greibach normal form (GNF) if the right-hand sides of all production rules start with a terminal symbol, optionally followed by some variables. A non-strict form allows one exception to this format restriction for allowing the empty word (epsilon, ε) to be a member of the described language.".
- Greibach_normal_form label "Forma normal de Greibach".
- Greibach_normal_form label "Forma normal de Greibach".
- Greibach_normal_form label "Forma normale di Greibach".
- Greibach_normal_form label "Greibach normal form".
- Greibach_normal_form label "Greibach-Normalform".
- Greibach_normal_form label "Greibach-normaalvorm".
- Greibach_normal_form label "Postać normalna Greibach".
- Greibach_normal_form label "グライバッハ標準形".
- Greibach_normal_form label "格雷巴赫标准式".
- Greibach_normal_form sameAs Greibachové_normální_forma.
- Greibach_normal_form sameAs Greibach-Normalform.
- Greibach_normal_form sameAs Forma_normal_de_Greibach.
- Greibach_normal_form sameAs Forma_normale_di_Greibach.
- Greibach_normal_form sameAs グライバッハ標準形.
- Greibach_normal_form sameAs Greibach-normaalvorm.
- Greibach_normal_form sameAs Postać_normalna_Greibach.
- Greibach_normal_form sameAs Forma_normal_de_Greibach.
- Greibach_normal_form sameAs m.0f3d0.
- Greibach_normal_form sameAs Q1499325.
- Greibach_normal_form sameAs Q1499325.
- Greibach_normal_form sameAs Greibach_normal_form.
- Greibach_normal_form wasDerivedFrom Greibach_normal_form?oldid=601562837.
- Greibach_normal_form isPrimaryTopicOf Greibach_normal_form.