Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Grothendieck–Teichmüller_group> ?p ?o. }
Showing items 1 to 16 of
16
with 100 items per page.
- Grothendieck–Teichmüller_group abstract "In mathematics, the Grothendieck–Teichmüller group GT is a group closely related to (and possibly equal to) the absolute Galois group of the rational numbers. It was introduced by Vladimir Drinfeld (1990) and named after Alexander Grothendieck and Oswald Teichmüller, based on Grothendieck's suggestion in his Esquisse d'un Programme to study the absolute Galois group of the rationals by relating it to its action on the Teichmüller tower of Teichmüller groupoids Tg,n, the fundamental groupoids of moduli stacks of genus g curves with n points removed. There are several minor variations of the group: a discrete version, a pro-l version, a k-pro-unipotent version, and a profinite version; the first three versions were defined by Drinfeld, and the version most often used is the profinite version.".
- Grothendieck–Teichmüller_group wikiPageID "37761264".
- Grothendieck–Teichmüller_group wikiPageRevisionID "598872882".
- Grothendieck–Teichmüller_group authorlink "Vladimir Drinfeld".
- Grothendieck–Teichmüller_group first "Vladimir".
- Grothendieck–Teichmüller_group last "Drinfeld".
- Grothendieck–Teichmüller_group year "1990".
- Grothendieck–Teichmüller_group subject Category:Number_theory.
- Grothendieck–Teichmüller_group comment "In mathematics, the Grothendieck–Teichmüller group GT is a group closely related to (and possibly equal to) the absolute Galois group of the rational numbers.".
- Grothendieck–Teichmüller_group label "Grothendieck–Teichmüller group".
- Grothendieck–Teichmüller_group label "Théorie de Grothendieck-Teichmüller".
- Grothendieck–Teichmüller_group sameAs Grothendieck%E2%80%93Teichm%C3%BCller_group.
- Grothendieck–Teichmüller_group sameAs Théorie_de_Grothendieck-Teichmüller.
- Grothendieck–Teichmüller_group sameAs Q13162325.
- Grothendieck–Teichmüller_group sameAs Q13162325.
- Grothendieck–Teichmüller_group wasDerivedFrom Grothendieck–Teichmüller_group?oldid=598872882.